Skip to main content
Log in

Electrochemical investigation of the effect of some organic phosphates on haemoglobin

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

The effects of DPG, IHP, GTP, GDP and GMP on the structure and stability of haemoglobin were electrochemically investigated with an iodide-modified silver electrode in 0.01 M KNO3 at pH 7.0. Anodic and cathodic peaks of haemoglobin were observed at 250 mV and 12 mV with a formal potential value of 133 mV vs. Ag/AgCl. The effects of different concentrations of DPG, IHP, GTP, GDP and GMP on the anaerobic redox reaction were determined. The results showed that DPG and IHP can lead to a positive shift in the reduction peak of haemoglobin, indicating that the oxidation peak shift of haemoglobin was small as a result of stabilization of the reduced state and destabilization of the R-like state of haemoglobin. GTP elicited a more positive shift in the cathodic and anodic peaks of haemoglobin at a higher concentration, signifying that it has a low-affinity binding site on haemoglobin. The positive shift of the cathodic and anodic peaks revealed a slight variation in the structure and indicated the unfolding of haemoglobin in the presence of high concentrations of GTP. Our study also showed that GDP and GMP did not cause significant shift the cathodic and anodic peaks of haemoglobin even at high concentrations, refuting the existence of specific GDP-and GMP-binding sites on the protein. Moreover, the iodide-modified silver electrode method proved to be easy and useful in investigating the effects of ligands or other effectors on haemoglobin in solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ATP:

adenosine-5′-triphosphate

CV:

cyclic voltammogram

DPG:

2,3-diphosphoglycerate

GTP:

guanosine 3′,5′-tetraphosphate

GDP:

guanosine diphosphate

GMP:

guanosine monophosphate

HbA:

human adult haemoglobin

IHP:

inositol hexaphosphate

SDS:

sodium dodecyl sulphate

SERRS:

Surface Enhanced Resonant Raman Scattering

References

  • Arnone A 1972 X-ray diffraction study of binding of 2,3-diphosphoglycerate to human deoxyhaemoglobin; Nature 237 146–149

    Article  CAS  Google Scholar 

  • Ajloo D, Moosavi-Movahedi A A, Sadeghi M and Gharibi H 2002 Comparative structural and functional studies of avian and mammalian hemoglobins; Acta. Biochim. Pol. 49 459–470

    CAS  PubMed  Google Scholar 

  • Baldwin J and Chothia C 1979 Hemoglobin: the structural changes related to ligand binding and its allosteric mechanism; J. Mol. Biol. 129 175–220

    Article  CAS  Google Scholar 

  • Chen H Y, Ju H X and Xun Y Q 1994 Methylene blue/perfluorosulfonated ionomer modified microcylinder carbon fiber electrode and its application for the determination of hemoglobin; Anal. Chem. 66 4538–4542

    Article  CAS  Google Scholar 

  • Dayer M R, Moosavi-Movahedi A A, Norouzi P, Ghourchian H and Safarian S 2002 Inhibition of human hemoglobin autoxidation by sodium n-dodecyl sulphate; J. Biochem. Mol. Biol. 35 364–370

    Google Scholar 

  • Dong S, Zhu Y and Song S 1989 Electrode processes of hemoglobin at a platinum electrode covered by brilliant cresyl blue; Bioelectrochem. Bioenerg. 21 233–243

    Article  CAS  Google Scholar 

  • Eddowes M J and Hill H A O 1977 Novel method for the investigation of the electrochemistry of metalloproteins: cytochrome c; J. Chem. Soc. Chem. Commn. 21 771–772

    Article  Google Scholar 

  • Fan H, Wang S, Sun D, Zhu G, Wagner G and Li G 2001 Electron transfer reactivity and enzymatic activity of hemoglobin in a SP sephadex membrane; Anal. Chem. 73 2850–2854

    Article  CAS  Google Scholar 

  • Fan C, Li G, Zhuang Y, Zhu J and Zhu D 2000 Iodide modified silver electrode and its application to the electroanalysis of hemoglobin; Electroanalysis 12 205–208

    Article  CAS  Google Scholar 

  • Faulkner K M, Bonaventura C and Crumbliss A L 1994 A spectroelectrochemical method for evaluating factors which regulate the redox potential of hemoglobins; Inorg. Chim. Acta 226 187–194

    Article  CAS  Google Scholar 

  • Funk W D, Lo T P, Mauk M R, Brayer G D, MacGillivray R T and Mauk A G 1990 Mutagenic, electrochemical, and crystallographic investigation of the cytochrome b5 oxidation-reduction equilibrium: involvement of asparagine-57, serine-64, and heme propionate-7; Biochemistry 12 5500–5508

    Article  Google Scholar 

  • Faulkner K M, Crumbliss A L and Bonaventura C 1995 A spectroelectrochemical method for differentiation of steric and electronic effects in hemoglobins and myoglobins; J. Biol. Chem. 270 13604–13612

    Article  CAS  Google Scholar 

  • Imai K 1982 Allosteric effects in haemoglobin (Cambridge: Cambridge University Press)

    Google Scholar 

  • Kuramitz H, Ugawara K S, Kawasaki M, Hasebe K, Nakamura H and Tanaka S 1999 Electrocatalytic reduction of hemoglobin at a self-assembled monolayer electrode containing redox dye, Nile blue as an electron-transfer mediator, Anal. Sci. 15 15589–15592

    Article  Google Scholar 

  • Laberge M, Kövesi I, Yonetani T and Fidy J 2005 R-state hemoglobin bound to heterotrophic effectors: models of the DPG, IHP and RSR 13 binding sites; FEBS Lett. 579 627–632

    Article  CAS  Google Scholar 

  • Li G, Chen L, Zhu J, Zhu D and Untereker D F 1999 Histidine modifed electrode and its application to the electrochemical studies of hemeproteins; Electroanalysis 11 139–143

    Article  Google Scholar 

  • Li Q C and Mabrouk P A 2003 Spectroscopic and electrochemical studies of horse myoglobin in dimethyl sulfoxide; J. Biol. Inorg. Chem. 8 83–94

    Article  Google Scholar 

  • Lu T, Yu X, Dong S, Zhou C, Ye S and Cotton T M 1994 Direct electrochemical reactions of cytochrome c at iodide-modified electrodes; J. Electroanal. Chem. 369 79–86

    Article  CAS  Google Scholar 

  • Marta M, Patamia M, Colella A, Sacchi S, Pomponi M, Kovacs K M, Lydersen C and Giardina B 1998 Anionic binding site and 2,3-DPG effect in bovine hemoglobin; Biochemistry 37 14024–14029

    Article  CAS  Google Scholar 

  • Moosavi-Movahedi A A, Chamani J, Ghourchian H, Shafiey H, Sorenson C M and Sheibani N 2003 Electrochemical evidence for the molten globule states of cytochrome c induced by N-alkyl sulfates at low concentrations; J. Protein Chem. 22 23–30

    Article  CAS  Google Scholar 

  • Osti F, Corradini F G, Hanau S, Matteuzzi M and Gambarir R 1997 Human leukemia k562 cells: induction to erythroid differentiation by guanine, guanosine and guanine nucleotides; Haematologica 82 395–401

    CAS  PubMed  Google Scholar 

  • Peng W, Liu X, Zhang W and Li G 2003 An electrochemical investigation of effect of ATP on hemoglobin; Biophys. Chem. 106 267–273

    Article  CAS  Google Scholar 

  • Pomponi M, Gavuzzo E, Bertonati C, Derocher A E, Lydersen C, Wiig Y and Kovacs K M 2004 Hemoglobin, pH and DPG/chloride shifting; Biochimie 86 927–932

    Article  CAS  Google Scholar 

  • Poyart C, Marden M C and Kister J 1994 Bezafibrate derivatives as potent effectors of hemoglobin; Methods Enzymol. 232 496–513

    Article  CAS  Google Scholar 

  • Richard V, Dodson G G and Mauguen Y 1993 Human deoxyhaemoglobin-2,3 diphosphoglycerate complex low-salt structure at 2.5 A° resolution; J. Mol. Biol. 233 270–291

    Article  CAS  Google Scholar 

  • Rubin M A, Medeiros A C, Rocha P C B, Livi C B, Ramirez G and Souza D O 1997 Effect of guanine nucleotides on [3H]glutamate binding and on adenylate cyclase activity in rat brain membranes; Neurochem. Res. 22 181–187

    Article  CAS  Google Scholar 

  • Sarma S, Di Gate R J, Goodin DB, Miller C J and Guiles RD 1997 Effect of axial ligand plane reorientation on electronic and electrochemical properties observed in the A67V mutant of rat cytochrome b5; Biochemistry 36 5658–5668

    Article  CAS  Google Scholar 

  • Scheller F W, Bistolas N, Liu S, Jänchen M, Katterle M and Wollenberger U 2005 Thirty years of haemoglobin electrochemistry; Adv. Coll. Interf. Sci. 116 111–120

    Article  CAS  Google Scholar 

  • Sibbald M S, Chumanov G and Cotton T M 1996 Reduction of cytochrome c by halide-modified, laser-ablated silver colloids; J. Phys. Chem. 100 4672–4678

    Article  CAS  Google Scholar 

  • Sibbald M S, Chumanov G and Cotton T M 1997 Reductive properties of iodide modified silver nanoparticles; J. Electroanal. Chem. 438 179–185

    Article  CAS  Google Scholar 

  • Sun D P, Zou M, Ho N T and Ho C 1997 Contribution of surface histidyl residues in the a-chain to the Bohr effect of human normal adult hemoglobin: roles of global electrostatic effects; Biochemistry 36 6663–6673

    Article  CAS  Google Scholar 

  • Sun W, Kong J and Deng J 1997 Electrocatalytic reduction of hemoglobin at a chemically modified electrode containing riboflavin; Electroanalysis 9 115–119

    Article  CAS  Google Scholar 

  • Sun Y, Liu X, Fan C, Zhang W and Li G 2004 Electrochemical investigation of the chloride effect on hemoglobin; Bioelectrochemistry 64 23–27

    Article  CAS  Google Scholar 

  • Tamburrini M, Verde C, Olianas A, Giardina B, Corda M, Sanna M T, Fais A, Deiana A M, di Prisco G and Pellegrini M 2001 The hemoglobin system of the brown moray Gymnothorax unicolor structure/function relationships; Eur. J. Biochem. 268 4104–4111

    Article  CAS  Google Scholar 

  • Tsuneshige A, Park S and Yonetani T 2002 Heterotropic effectors control the hemoglobin function by interacting with its T and R states — a new view on the principle of allostery; Biophys. Chem. 98 49–63

    Article  CAS  Google Scholar 

  • Ye J and Baldwin R P 1988 Catalytic reduction of myoglobin and hemoglobin at chemically modified electrodes containing methylene blue; Anal. Chem. 60 2263–2268

    Article  CAS  Google Scholar 

  • Zhang W, Zhou H, Li G and Scheer H 2004 An electrochemical study of hemoglobin in water — glycerol solution; Biophys. Chem. 111 229–233

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A A Saboury.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rezaei-Zarchi, S., Saboury, A.A., Ghourchian, H. et al. Electrochemical investigation of the effect of some organic phosphates on haemoglobin. J Biosci 32, 271–278 (2007). https://doi.org/10.1007/s12038-007-0027-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-007-0027-y

Keywords

Navigation