Skip to main content
Log in

Effect of palladium and its nanogeometry on the redox electrochemistry of tetracyanoquinodimethane modified electrode; application in electrochemical sensing of ascorbic acid

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The current work reports the effect of palladium nanoparticles and their nanogeometry on the redox electrochemistry of tetracyanoquinodimethane (TCNQ) modified electrodes. Palladium nanoparticles were prepared with different concentrations of 3-aminopropyltrimethoxysilane and calcination at 600 °C to yield PdNP-1 and PdNP-2 of the average size of 1 µm and 12 nm, respectively. The palladium nanoparticles were characterized by TEM, XRD, and AFM techniques. The electrochemical excellence of ascorbic acid was resoluted using cyclic voltammetry amperometry, electrochemical impedance spectroscopy, and differential pulse voltammetry. A limit of detection (LOD) was found to be 51.61, 44.38 and 30.10 µM over a linear range from 50 to 625 µM for modified CPE/TCNQ, CPE/TCNQ-PdNP-1, and CPE/TCNQ-PdNP-2, respectively, determined by amperometric analysis for ascorbic acid at pH 7. The synergistic effect of Palladium and π* orbital of TCNQ played an important role in the enhancement of the catalytic activity of the modified electrode. The modified electrode showed good sensitivity, stability, and reproducibility which was confirmed by cyclic voltammetry, and amperometric analysis. The charge transfer resistance value also indicated that the modified electrode hads good electrocatalytic activity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ganesh PS, Kim SY (2022) Electrochemical sensing interfaces based on novel 2D-MXenes for monitoring environmental hazardous toxic compounds: a concise review. J Ind Eng Chem 109:52–67. https://doi.org/10.1016/j.jiec.2022.02.006

    Article  CAS  Google Scholar 

  2. Elugoke SE, Fayemi OE, Adekunle AS, Ganesh PS, Kim SY, Ebenso EE (2023) Sensitive and selective neurotransmitter epinephrine detection at a carbon quantum dots/copper oxide nanocomposite. J Electroanal Chem 929:117–120. https://doi.org/10.1016/j.jelechem.2022.117120

    Article  CAS  Google Scholar 

  3. Rajaji U, Ganesh PS, Chen SM, Govindasamy M, Kim SY, Alshgari RA, Shimoga G (2021) Deep eutectic solvents synthesis of perovskite-type cerium aluminate embedded carbon nitride catalyst: high-sensitive amperometric platform for sensing of glucose in biological fluids. J Ind Eng Chem 102:312–320. https://doi.org/10.1016/j.jiec.2021.07.015

    Article  CAS  Google Scholar 

  4. Chadchan KS, Teradale AB, Ganesh PS, Das SN (2022) Simultaneous sensing of mesalazine and folic acid at poly (murexide) modified glassy carbon electrode surface. J Mater Chem Phys 290:126–538. https://doi.org/10.1016/j.matchemphys.2022.126538

    Article  CAS  Google Scholar 

  5. Okpara EC, Fayemi OE, Sherif ESM, Ganesh PS, KumaraSwamy BE, Ebenso EE (2022) Electrochemical evaluation of Cd2+ and Hg2+ ions in water using ZnO/Cu2ONPs/PANI modified SPCE electrode. Sens Bio-Sens Res 35:100476. https://doi.org/10.1016/j.sbsr.2022.100476

    Article  Google Scholar 

  6. Rajaji U, Ganesh PS, Kim SY, Govindasamy M, Alshgari RA, Liu TY (2022) MoS2 sphere/2D S-Ti3C2 MXene nanocatalysts on laser-induced graphene electrodes for hazardous aristolochic acid and roxarsone electrochemical detection. ACS Appl Nano Mater 5(3):3252–3264. https://doi.org/10.1021/acsanm.1c03680

    Article  CAS  Google Scholar 

  7. Ganesh PS, Teradale AB, Kim SY, Ko HU, Ebenso EE (2022) Electrochemical sensing of anti-inflammatory drug mesalazine in pharmaceutical samples at polymerized-congo red modified carbon paste electrode. Chem Phys Lett 806:140043. https://doi.org/10.1016/j.cplett.2022.140043

    Article  CAS  Google Scholar 

  8. Ganesh PS, Kim SY, Kaya S, Salim R (2022) An-experimental and theoretical approach to electrochemical sensing of environmentally hazardous dihydroxy benzene isomers at polysorbate modified carbon paste electrode. Sci Rep 12(1):2149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Beitollahi H, Dourandish Z, Tajik S, Sharifi F, Jahani PM (2022) Electrochemical sensor based on Ni-co layered double hydroxide hollow nanostructures for ultrasensitive detection of Sumatriptan and naproxen. Biosensors 12(10):872. https://doi.org/10.3390/bios12100872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Beitollahi H, Tajik S, Dourandish Z, Nejad FG (2022) Simple preparation and characterization of hierarchical flower-like NiCo2O4 nanoplates: applications for sunset yellow electrochemical analysis. Biosensors 12(11):912. https://doi.org/10.3390/bios12110912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Beitollahi H, Tajik S, Aflatoonian MR, Makarem A (2022) A sensitive Cu (salophen) modified screen-printed electrode for simultaneous determination of dopamine and uric acid. J Electrochem Sci Eng 12(1):199–208. https://doi.org/10.5599/jese.1231

    Article  CAS  Google Scholar 

  12. Beitollahi H, Tajik S, Aflatoonian MR, Makarem A (2022) Glutathione detection at carbon paste electrode modified with ethyl 2-(4-ferrocenyl- [1, 2, 3] triazol-1-yl) acetate, ZnFe2O4nano-particles, and ionic liquid. J Electrochem Sci Eng 12(1):209–217. https://doi.org/10.5599/jese.1230

    Article  CAS  Google Scholar 

  13. Tajik S, Orooji Y, Ghazanfari Z, Karimi F, Beitollahi H, Varma RS, Jang HW, Shokouhimehr M (2021) Nanomaterials modified electrodes for electrochemical detection of Sudan I in food. J Food Measurement Characterization 15:3837–3852. https://doi.org/10.1007/s11694-021-00955-1

    Article  Google Scholar 

  14. Moghaddam HM, Beitollahi H, Tajik S, Janani S, Khabazzadeh H, Alizadeh R (2017) Voltammetric determination of droxidopa in the presence of carbidopa using a nanostructured base electrochemical sensor. Russ J Electrochem 53:452–460. https://doi.org/10.1134/S1023193517050123

    Article  CAS  Google Scholar 

  15. Faraghly OA, Hameed RSA, Alhakeem A, Nawwas HA (2014) Review analytical application using modern electrochemical techniques. Int J Electrochem Sci 9:3287–3318

    Article  Google Scholar 

  16. Wang H, Qiong Wu, Wang Y, Lv X, Wang H-G (2022) A redox-active metal–organic compound for lithium/sodium-based dual-ion batteries. J Colloid Interface Sci 606:1024–1030. https://doi.org/10.1016/j.jcis.2021.08.113

    Article  CAS  PubMed  Google Scholar 

  17. Murthy ASN, Anita (1994) Electrochemical oxidation of L-ascorbic acid on 7,7,8,8-tetracyanoquinodimethane (TCNQ)modified electrode. Biosens Bioelectron 9:439–444. https://doi.org/10.1016/0956-5663(94)90032-9

    Article  CAS  Google Scholar 

  18. Hussain Z, Zou W, Murdoch BJ, Nafady A, Field MR, Ramanathan R, Bansal V (2020) Metal-organic charge transfer complexes of Pb (TCNQ)2 and Pb (TCNQF4)2 as new catalysts for electron transfer reactions. Adv. Mater. Interfaces 7:2001111. https://doi.org/10.1002/admi.202001111

    Article  CAS  Google Scholar 

  19. Peng H, Huang S, Tranca D, Richard F, Baaziz W, Zhuang X, Samorì P, Ciesielski A (2021) Quantum capacitance through molecular infiltration of 7,7,8,8-tetracyanoquinodimethane in metal−organic framework/covalent organic framework hybrids. ACS Nano 15:18580–18589. https://doi.org/10.1021/acsnano.1c09146

    Article  CAS  PubMed  Google Scholar 

  20. Fujihara Y, Kobayashi H, Takaishi S, Tomai T, Yamashita M, Honma I (2020) Electrical conductivity-relay between organic charge-transfer and radical salts toward conductive additive-free rechargeable battery. ACS Appl Mater Interfaces 12:25748–25755. https://doi.org/10.1021/acsami.0c03642

    Article  CAS  PubMed  Google Scholar 

  21. Leith GA, Rice AM, Yarbrough BJ, Berseneva AA, Ly RT, Buck CN III, Chusov D et al (2020) A dual threat: redox-activity and electronic structures of well-defined donor–acceptor fulleretic covalent-organic materials. Angew Chem 132(15):6056–6062. https://doi.org/10.1002/ange.201914233

    Article  Google Scholar 

  22. Murase R, Hudson TA, Aldershof TS, Nguyen KV, Gluschke JG, Kenny EP, Zhou X, Wang T, van Koeverden MP, Powell BJ, Micolich AP, Abrahams BF, D’Alessandro DM (2022) Multi-redox responsive behavior in a mixed-valence semiconducting framework based on bis-[1,2,5]-thiadiazolotetracyanoquinodimethane. J Am Chem Soc 144:13242–13253. https://doi.org/10.1021/jacs.2c03794

    Article  CAS  PubMed  Google Scholar 

  23. Ivanov I, Vidakovic-Koch T, Sundmacher K (2013) Alternating electron transfer mechanism in the case of high-performance tetrathiafulvalene–Tetracyanoquinodimethane enzymatic electrodes. J Electroanaly Chem 690:68–73. https://doi.org/10.1016/j.jelechem.2012.11.009

    Article  CAS  Google Scholar 

  24. Sato R, Kawamoto T, Mori T (2019) Asymmetrical hole/electron transport in donor-acceptor mixed-stack cocrystals. J. Mater. Chem. C 7:567–577. https://doi.org/10.1039/C8TC05190A

    Article  CAS  Google Scholar 

  25. Wu H, Tian C, Song X, Liu C, Yang D, Jiang Z (2013) Methods for the regeneration of nicotinamide coenzymes. Green Chem 15(7):1773–1789. https://doi.org/10.1039/C3GC37129H

    Article  CAS  Google Scholar 

  26. Pandey PC, Pandey V, Mehta S (1994) An amperometric enzyme electrode for lactate based on graphite paste modified with Tetracyanoquinodimethane. Biosens Bioelectron 9:365–372. https://doi.org/10.1016/0956-5663(94)80037-5

    Article  CAS  Google Scholar 

  27. Pandey PC, Pandey V, Mehta S (1993) A glucose sensor based on graphite paste electrode modified with Tetracyanoquinodimethane. Indian J Chem 32:667–672

    Google Scholar 

  28. Pandey PC, Upadhyay S, Upadhyay BC, Pathak HC (1998) Ethanol biosensors and electrochemical oxidation of NADH. Anal Biochem 260:195–203. https://doi.org/10.1006/abio.1998.2679

    Article  CAS  PubMed  Google Scholar 

  29. Pandey PC, Upadhyay S, Pathak HC (1999) A new ferrocene-linked organically modified electrode sol-gel glass and its application in constructing Ion-selective electrodes. Electroanalysis 11:950–958

    Article  CAS  Google Scholar 

  30. Pandey PC, Upadhyay S, Tiwari I, Sharma S (2001) A novel ferrocene encapsulated palladium-linked ormosil based electrocatalytic biosensor; role of reactive functional group. Electroanalysis 13(18):1519–1527

    Article  CAS  Google Scholar 

  31. Pandey PC, Upadhyay S, Shukla NK, Sharma S (2003) Studies on the electrochemical performance of glucose biosensor based on ferrocene encapsulated ORMOSIL and glucose oxidase modified graphite paste electrode. Biosens Bioelectron 10:1257–1268. https://doi.org/10.1016/S0956-5663(03)00075-7

    Article  CAS  Google Scholar 

  32. Pandey PC, Singh R, Pandey AK (2014) Tetrahydrofuran hydroperoxide and 3-Aminopropyltrimethoxysilanemediated controlled synthesis of Pd, Pd-Au, Au-Pd nanoparticles: role of Palladium nanoparticles on the redox electrochemistry of ferrocene monocarboxylic acid. Electrochimica Acta 138:163–173. https://doi.org/10.1016/j.electacta.2014.06.101

    Article  CAS  Google Scholar 

  33. Pandey PC, Singh R (2015) Controlled synthesis of Pd, Pd-Au, nanoparticles; effects of organic amine and silanol groups on the morphology and polycrystallinity of nanomaterials. RSC Adv 5:10964–10973. https://doi.org/10.1039/C4RA16201C

    Article  CAS  Google Scholar 

  34. Pandey PC, Pandey G, Haider J, Pandey G (2016) Role of organic carbonyl moiety and 3-aminopropyltrimethoxysilane on the synthesis of gold nanoparticles specific to pH and salt tolerance. J. Nanosci. Nanotechnol. 16:6155–6163. https://doi.org/10.1166/jnn.2016.11104

    Article  CAS  PubMed  Google Scholar 

  35. Kumar N, Rosy RN (2017) Goyal, Palladium nanoparticles decorated multi-walled carbon nanotubes modified sensor for the determination of 5-hydroxytryptophan in biological fluids. Sens Actuators B 239:1060–1068. https://doi.org/10.1016/j.snb.2016.08.122

    Article  CAS  Google Scholar 

  36. Wu P, Huang Y, Zhao X, Lin D, Xie L, Li Z, Zhu Z, Lan M (2022) MnFe2O4/MoS2 nanocomposite as Oxidase-like for electrochemical simultaneous detection of ascorbic acid, dopamine and uric acid. Microchem J 181:107780. https://doi.org/10.1016/j.microc.2022.107780

    Article  CAS  Google Scholar 

  37. Yang L, Liu D, Hunang J, You T (2014) Simultaneous determination of dopamine, ascorbic acid and uric acid at electrochemically reduced graphene oxide modified electrode. Sens Actuators, B Chem 193:166–172. https://doi.org/10.1016/j.snb.2013.11.104

    Article  CAS  Google Scholar 

  38. Huang H, Yue Y, Chen Z, Chen Y, Wu S, Liao J, Liu S, Wen HR (2019) Electrochemical sensor based on a nanocomposite prepared from TmPO4 and graphene oxide for simultaneous voltammetric detection of ascorbic acid, dopamine and uric acid. Microchimia Acta 189:1–9. https://doi.org/10.1007/s00604-019-3299-7

    Article  CAS  Google Scholar 

  39. Anan WK, Olarnwanich A, Sriprachuabwong C, Karuwan C, Tuantranont A, Wisitsoraat A, Srituravanich W, Pimpin A (2012) Disposable paper-based electrochemical sensor utilizing inkjet-printed polyaniline modified screen-printed carbon electrode for ascorbic acid detection. J Electroanal Chem 685:72–78. https://doi.org/10.1016/j.jelechem.2012.08.039

    Article  CAS  Google Scholar 

  40. Chen W, Tang J, Cheng HJ, Xia XH (2009) A simple method for fabrication of sole composition nickel hexacyanoferrate modified electrode and its application. Talanta 80:539–543. https://doi.org/10.1016/j.talanta.2009.07.022

    Article  CAS  PubMed  Google Scholar 

  41. dos Santos PL, Katic V, Toledo KCF, Bonacin JA (2018) Photochemical one-pot synthesis of reduced graphene oxide/Prussian blue nanocomposite for simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid. Sens Actuators, B Chem 225:2437–2447. https://doi.org/10.1016/j.snb.2017.09.036

    Article  CAS  Google Scholar 

  42. Ghanbari K, Hajheidari N (2015) ZnO–CuxO/polypyrrole nanocomposite modified electrode for simultaneous determination of ascorbic acid, dopamine, and uric acid. Anal Biochem 473:53–62. https://doi.org/10.1016/j.ab.2014.12.013

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Central Instrumentation Facility Centre (CIFC) IIT (BHU) for providing TEM and AFM facilities. The author is also thankful to Prof. P. C. Pandey for providing an electrochemical workstation and the Head of the Department for providing other facilities.

Author information

Authors and Affiliations

Authors

Contributions

KKMhas done all the experimental work as well as written and revised the manuscript, KS has done the analysis of images and MM has reviewed and rewritten the manuscript.

Corresponding author

Correspondence to Manisha Malviya.

Ethics declarations

Conflict of interest

The authors disclose that they do not have any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 21 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurya, K.K., Singh, K. & Malviya, M. Effect of palladium and its nanogeometry on the redox electrochemistry of tetracyanoquinodimethane modified electrode; application in electrochemical sensing of ascorbic acid. J Appl Electrochem 53, 1831–1842 (2023). https://doi.org/10.1007/s10800-023-01878-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-023-01878-z

Keywords

Navigation