Skip to main content
Log in

The Effect of Solution pH on the Oxidation of Sulfite Ions and the Formation of Oxides on the Gold Electrode

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The results of studying the effect of solution pH on the electrode process that occurs on the gold electrode in solutions of sodium sulfite, sulfuric acid, and alkali, and also in the universal buffer of Britton–Robinson (pH 2–14) are shown. In sodium sulfite solutions, this electrode process represents a combination of the oxidation of sulfite species and the formation of oxides on the gold surface that proceeds simultaneously in the same potential region. It is shown that the solution pH and the oxidation of sulfite species have no effect on the amount of gold α-oxide formed. At the same time, the solution pH has a strong effect on the oxidation of sulfite species. Thus, the voltammograms measured in solutions with pH approximately between 2 and 11 are identical, i.e., the process rate is independent of the solution acidity and its partial composition. These results suggest that in this pH region, the oxidation of sulfite ions can be interpreted by the overall reaction \(2{\text{SO}}_{3}^{{2 - }} \to {{{\text{S}}}_{{\text{2}}}}{\text{O}}_{6}^{{2 - }} + 2{\text{e}}\) to produce dithionate ions. In strongly alkaline solutions (pH 12.5–14), the oxidation potential shifts in the negative direction and the current decreases with increasing pH. These results suggest that in strongly alkaline solutions, the oxidation of sulfite ions can proceed on the partly blocked electrode surface by the reaction \({\text{SO}}_{3}^{{2 - }} + 2{\text{O}}{{{\text{H}}}^{ - }} \to {\text{SO}}_{4}^{{2 - }} + {{{\text{H}}}_{{\text{2}}}}{\text{O}} + 2{\text{e}}\) to form sulfate ions. The changeover of the mechanism of oxidation of sulfite ions takes place in a narrow potential region in solutions with pH from 11 to 12.5 and is accompanied by anomalously sharp changes in the measured current. The latter anomalies are associated with the peculiar dynamics of the process of passivation/depassivation of the electrode surface by gold oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

Similar content being viewed by others

REFERENCES

  1. O’Brien, J.A., Hinkley, J.T., Donne, S.W., and Lindquist, S.-E., The electrochemical oxidation of aqueous sulfur dioxide: A critical review of work with respect to the hybrid sulfur cycle, Electrochim. Acta, 2010, vol. 55, p. 573.

    Article  Google Scholar 

  2. Seo, E.T. and Sawyer, D.T., Electrochemical oxidation of dissolved sulphur dioxide at platinum and gold electrodes, Electrochim. Acta, 1965, vol. 10, p. 239.

    Article  CAS  Google Scholar 

  3. Samec, Z. and Weber, J., Study of the oxidation of SO2 dissolved in 0.5 M H2SO4 on a gold electrode–I. Stationary electrode, Electrochim. Acta, 1975, vol. 20, p. 403.

    Article  CAS  Google Scholar 

  4. Samec, Z. and Weber, J., Study of the oxidation of SO2 dissolved in 0.5 M H2SO4 on a gold electrode–II. A rotating disc electrode, Electrochim. Acta, 1975, vol. 20, p. 413.

    Article  CAS  Google Scholar 

  5. Varga, K., Baradlai, P., and Vertes, A., In-situ radiotracer studies of sorption processes in solutions (bi)sulfite ions—I. Polycrystalline gold, Electrochim. Acta, 1997, vol. 42, p. 1143.

    Article  CAS  Google Scholar 

  6. Quijada, C., Morallon, E., Vazquez, J.L., and Berlouis, L.E.A., Electrochemical behaviour of aqueous SO2 at polycrystalline gold electrodes in acidic media. A voltammetric and in-situ vibrational study. Part II. Oxidation of SO2 on bare and sulphur-modified electrodes, Electrochim. Acta, 2000, vol. 46, p. 651.

    Article  CAS  Google Scholar 

  7. Allen, J.A., Rowe, G., Hinkley, J.T., and Donne S.W., Electrochemical aspects of the Hybrid Sulfur Cycle for large scale hydrogen production, Int. J. Hydrogen Energy, 2014, vol. 39, p. 11376.

    Article  CAS  Google Scholar 

  8. Tolmachev, Y.V. and Scherson, D.A., The electrochemical oxidation of sulfite on gold: UV-Vis reflectance spectroscopy at rotating disk electrode, Electrochim. Acta, 2004, vol. 49, p. 1315.

    Article  CAS  Google Scholar 

  9. Quijada, C., Huerta, F.J., Morallón, E., Vázquez, J.L., and Berlouis, L.E.A., Electrochemical behaviour of aqueous SO2 at polycrystalline gold electrodes in acidic media: a voltammetric and in-situ vibrational study. Part I. Reduction of SO2: deposition of monomeric and polymeric sulfur, Electrochim. Acta, 2000, vol. 45, p. 1847.

    Article  CAS  Google Scholar 

  10. Nicol, M.J., The anodic behaviour of gold. Part I—Oxidation in acidic solution, Gold Bull., 1980, vol. 13, p. 46.

    Article  CAS  Google Scholar 

  11. Nicol, M.J., The anodic behaviour of gold. Part II—Oxidation in alkaline solution, Gold Bulletin, 1980, vol. 13, p. 105.

    Article  CAS  Google Scholar 

  12. Burke, L.D. and Nugent, P.F., The electrochemistry of gold: I. The redox behaviour of the metal in aqueous media, Gold Bull., 1997, vol. 30(2), p. 43.

    Article  CAS  Google Scholar 

  13. Petrović, Ž., Metikoš-Huković, M., Babić, R., Katić, J., and Milun, M., A multi-technique study of gold oxidation and semiconducting properties of the compact α‑oxide layers, J. Electroanal. Chem., 2009, vol. 629, p. 43.

    Article  Google Scholar 

  14. Burke, L.D., McCarthy, M.M., and Roche, M.V.C., Influence of solution pH on monolayer and multilayer oxide formation processes on gold and palladium, J. Electroanal. Chem., 1984, vol. 167, p. 291.

    Article  CAS  Google Scholar 

  15. Zelinsky, A.G. and Pirogov, B.Ya., Electrochemical oxidation of sulfite and sulfur dioxide at a renewable graphite electrode, Electrochim. Acta, 2017, vol. 231, p. 371.

    Article  CAS  Google Scholar 

  16. Zelinsky, A.G., Features of sulfite oxidation on gold anode, Electrochim. Acta, 2016, vol. 188, p. 727.

    Article  CAS  Google Scholar 

  17. Zelinsky, A.G. and Novgorodtseva, O.N., Effect of thiourea on the rate of anodic processes at gold and graphite electrodes in thiosulfate solutions, Electrochim. Acta, 2013, vol. 109, p. 482.

    Article  CAS  Google Scholar 

  18. Angerstein-Kozlowska, H., Conway, B.E., Barnett, B., and Mozota, J., The role of ion adsorption in surface oxide formation and reduction at noble metals: General features of the surface process, J. Electroanal. Chem., 1979, vol. 100, p. 417.

    Article  CAS  Google Scholar 

  19. Watanabe, T. and Gerischer, H., Photoelectrochemical studies on gold electrodes with surface oxide layers, J. Electroanal. Chem., 1981, vol. 117, p. 185.

    Article  CAS  Google Scholar 

  20. Jusys, Z. and Bruckensteine, S., Electrochemical quartz crystal microgravimetry of gold in perchloric and sulfuric acid solution, Electrochem. Solid-State Lett., 1998, vol. 1 (2), p. 74.

    Article  CAS  Google Scholar 

  21. Tian, M., Pell, W.G., and Conway, B.E., Nanogravimetry study of the initial stages of anodic surface oxide film growth at Au in aqueous HClO4 and H2SO4 by means of EQCN, Electrochim. Acta, 2003, vol. 48, p. 2675.

    Article  CAS  Google Scholar 

  22. Baten, S.M.A., Taylor, A.G., and Wilde, C.P., Second harmonic generation studies of the oxidation of metal electrodes: compact and hydrous oxide growth at gold electrodes in acid solutions, Electrochim. Acta, 2008, vol. 53, p. 6829.

    Article  CAS  Google Scholar 

  23. Giron, R.G.P. and Ferguson, G.S., Development of cathodic silence in an oxide film on gold electrode, Electrochim. Acta, 2015, vol. 180, p. 560.

    Article  CAS  Google Scholar 

  24. Reddy, A.K.N., Genshaw, M.A., and Bockris, J.O’M., Ellipsometric study of oxygen-containing films on platinum anodes, J. Chem. Phys., 1968, vol. 48, p. 671.

    Article  CAS  Google Scholar 

  25. Vetter, K.J. and Shultze, J.W., The kinetics of the electrochemical formation and reduction of monomolecular oxide layers on platinum in 0.5 M H2SO4. Part I. Potentiostatic pulse measurement, J. Electroanal. Chem., 1972, vol. 34, p. 131.

    Article  CAS  Google Scholar 

  26. Vetter, K.J. and Shultze, J.W., The kinetics of the electrochemical formation and reduction of monomolecular oxide layers on platinum in 0.5 M H2SO4. Part II. Galvanostatic pulse measurement and the model of oxide growth, J. Electroanal. Chem., 1972, vol. 34, p. 141.

    Article  CAS  Google Scholar 

  27. Xia, S.J. and Birss, V.I., A multi-technique study of compact and hydrous Au oxide growth in 0.1 M sulfuric acid solution, J. Electroanal. Chem., 2001, vol. 500, p. 562.

    Article  CAS  Google Scholar 

  28. Nechaev, I.V. and Vvedenskii, A.V., Quantum chemical modeling of hydroxide ion adsorption on group IB metals from aqueous solution, Prot. Met. Phys. Chem. Surf., 2009, vol. 45, p. 391.

    Article  CAS  Google Scholar 

  29. Ogura, K., Haruyama, S., and Nagasaki, R., The electrochemical oxidation and reduction of gold, J. Electrochem. Soc., 1971, vol. 118, p. 531.

    Article  CAS  Google Scholar 

  30. Burke, L.D., Lyons, M.E., and Whelan, D.P., Influence of solution pH on the reduction of thick anodic oxide films on gold, J. Electroanal. Chem., 1982, vol. 139, p. 131.

    Article  CAS  Google Scholar 

  31. Hunger, T., Lapicque, F., and Storck, A., Electrochemical oxidation of sulphite ions at graphite electrodes, J. Appl. Electrochem., 1991, vol. 21, p. 588.

    Article  CAS  Google Scholar 

  32. Glasstone, S. and Hickling, A., Studies in electrolytic oxidation. Part III. The formation of dithionate by the electrolytic oxidation, J. Chem. Soc., 1933, vol. 67, p. 829.

    Article  Google Scholar 

  33. Katagiri, A. and Matsubara, T., Electro-oxidation of sulfite to dithionate in presence of copper ion, J. Electrochem. Soc., 1988, vol. 135, p. 1709.

    Article  CAS  Google Scholar 

  34. Bancroft, W.D., Anode reactions, J. Chem. Soc., 1937, vol. 71, p. 195.

    Google Scholar 

  35. Damaskin, B.B. and Petrii, O.A., Vvedenie v Elektokhimicheskuyu Kinetiku (Introduction to Electrochemical Kinetics), Moscow: Vysshaya Shkola, 1975.

  36. O’Brien, J.A., Hinkley, J.T., and Donne, S.W., Observed electrochemical oscillations during the oxidation of aqueous sulfur dioxide on sulfur modified platinum electrode, Electrochim. Acta, 2011, vol. 56, p. 4224.

    Article  Google Scholar 

  37. Cho, B.W., Yun, K.S., and Chung, I.J., A study on anodic oxidation of iodide-mediated sulfur dioxide solution, J. Electrochem. Soc., 1987, vol. 134, p. 1664.

    Article  CAS  Google Scholar 

  38. Zelinsky, A.G., Anode current on gold in mixed thiosulfate-sulfite electrolytes, Electrochim. Acta, 2015, vol. 154, p. 315.

    Article  CAS  Google Scholar 

  39. Lu, J., Dreisinger, D.B., and Cooper, W.C., Anodic oxidation of sulphite ions on graphite anodes in alkaline solution, J. Appl. Electrochem., 1999, vol. 29, p. 1161.

    Article  CAS  Google Scholar 

  40. Brevett, C.A.S. and Jonson, D.C., Anodic oxidations of sulfite, thiosulfate, and dithionite at doped PbO2-film electrodes, J. Electrochem. Soc., 1992, vol. 139, p. 1314.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. G. Zelinskii or O. N. Novgorodtseva.

Ethics declarations

The authors state that they have no conflict of interests.

Additional information

Translated by T. Safonova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zelinskii, A.G., Novgorodtseva, O.N. The Effect of Solution pH on the Oxidation of Sulfite Ions and the Formation of Oxides on the Gold Electrode. Russ J Electrochem 55, 1171–1185 (2019). https://doi.org/10.1134/S1023193519120206

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519120206

Keywords:

Navigation