Skip to main content
Log in

Unraveling the Role of the Blood-Brain Barrier in the Pathophysiology of Depression: Recent Advances and Future Perspectives

  • Reviews
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Depression is a highly prevalent psychological disorder characterized by persistent dysphoria, psychomotor retardation, insomnia, anhedonia, suicidal ideation, and a remarkable decrease in overall well-being. Despite the prevalence of accessible antidepressant therapies, many individuals do not achieve substantial improvement. Understanding the multifactorial pathophysiology and the heterogeneous nature of the disorder could lead the way toward better outcomes. Recent findings have elucidated the substantial impact of compromised blood-brain barrier (BBB) integrity on the manifestation of depression. BBB functions as an indispensable defense mechanism, tightly overseeing the transport of molecules from the periphery to preserve the integrity of the brain parenchyma. The dysfunction of the BBB has been implicated in a multitude of neurological disorders, and its disruption and consequent brain alterations could potentially serve as important factors in the pathogenesis and progression of depression. In this review, we extensively examine the pathophysiological relevance of the BBB and delve into the specific modifications of its components that underlie the complexities of depression. A particular focus has been placed on examining the effects of peripheral inflammation on the BBB in depression and elucidating the intricate interactions between the gut, BBB, and brain. Furthermore, this review encompasses significant updates on the assessment of BBB integrity and permeability, providing a comprehensive overview of the topic. Finally, we outline the therapeutic relevance and strategies based on BBB in depression, including COVID-19-associated BBB disruption and neuropsychiatric implications. Understanding the comprehensive pathogenic cascade of depression is crucial for shaping the trajectory of future research endeavors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Richards D (2011) Prevalence and clinical course of depression: a review. Clin Psychol Rev 31(7):1117–1125

    Article  PubMed  Google Scholar 

  2. Reddy M (2010) Depression: the disorder and the burden, vol 32. SAGE Publications Sage India, New Delhi, India

    Google Scholar 

  3. Moreno-Agostino D, Wu Y-T, Daskalopoulou C, Hasan MT, Huisman M, Prina M (2021) Global trends in the prevalence and incidence of depression: a systematic review and meta-analysis. J Affect Disord 281:235–243

    Article  PubMed  Google Scholar 

  4. Deng J, Zhou F, Hou W, Silver Z, Wong CY, Chang O, Huang E, Zuo QK (2021) The prevalence of depression, anxiety, and sleep disturbances in COVID-19 patients: a meta-analysis. Ann N Y Acad Sci 1486(1):90–111

    Article  CAS  PubMed  Google Scholar 

  5. Cavanagh JT, Carson AJ, Sharpe M, Lawrie SM (2003) Psychological autopsy studies of suicide: a systematic review. Psychol Med 33(3):395–405

    Article  CAS  PubMed  Google Scholar 

  6. Wiebenga JX, Dickhoff J, Merelle SY, Eikelenboom M, Heering HD, Gilissen R, Van Oppen P, Penninx BW (2021) Prevalence, course, and determinants of suicide ideation and attempts in patients with a depressive and/or anxiety disorder: a review of NESDA findings. J Affect Disord 283:267–277

    Article  PubMed  Google Scholar 

  7. Noble RE (2005) Depression in women. Metabolism 54(5):49–52

    Article  CAS  PubMed  Google Scholar 

  8. Athira KV, Bandopadhyay S, Samudrala PK, Naidu V, Lahkar M, Chakravarty S (2020) An overview of the heterogeneity of major depressive disorder: current knowledge and future prospective. Curr Neuropharmacol 18(3):168–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li Z, Ruan M, Chen J, Fang Y (2021) Major depressive disorder: advances in neuroscience research and translational applications. Neurosci Bull 37:863–880

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lv X, Si T, Wang G, Wang H, Liu Q, Hu C, Wang J, Su Y et al (2016) The establishment of the objective diagnostic markers and personalized medical intervention in patients with major depressive disorder: rationale and protocol. BMC Psychiatry 16(1):1–10

    Article  Google Scholar 

  11. Maes M (1995) Evidence for an immune response in major depression: a review and hypothesis. Prog Neuro-Psychopharmacol Biol Psychiatry 19(1):11–38

    Article  CAS  Google Scholar 

  12. Wang H, Yang Y, Pei G, Wang Z, Chen N (2023) Neurotrophic basis to the pathogenesis of depression and phytotherapy. Front Pharmacol 14:1182666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mikulska J, Juszczyk G, Gawrońska-Grzywacz M, Herbet M (2021) HPA axis in the pathomechanism of depression and schizophrenia: new therapeutic strategies based on its participation. Brain Sci 11(10):1298

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yuan M, Yang B, Rothschild G, Mann JJ, Sanford LD, Tang X, Huang C, Wang C et al (2023) Epigenetic regulation in major depression and other stress-related disorders: molecular mechanisms, clinical relevance and therapeutic potential. Signal Transduct Target Ther 8(1):309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Trzeciak P, Herbet M (2021) Role of the intestinal microbiome, intestinal barrier and psychobiotics in depression. Nutrients 13(3):927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sonali S, Ray B, Ahmed Tousif H, Rathipriya AG, Sunanda T, Mahalakshmi AM, Rungratanawanich W, Essa MM et al (2022) Mechanistic insights into the link between gut dysbiosis and major depression: an extensive review. Cells 11(8):1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Carlessi AS, Borba LA, Zugno AI, Quevedo J, Réus GZ (2021) Gut microbiota–brain axis in depression: The role of neuroinflammation. Eur J Neurosci 53(1):222–235

    Article  CAS  PubMed  Google Scholar 

  18. Sah RK, Nandan A, Prashant S, Sathianarayanan S, Jose A, Venkidasamy B, Nile SH (2023) Decoding the role of the gut microbiome in gut-brain axis, stress-resilience, or stress-susceptibility: a review. Asian J Psychiatr:103861

  19. Penninx BW (2017) Depression and cardiovascular disease: epidemiological evidence on their linking mechanisms. Neurosci Biobehav Rev 74:277–286

    Article  PubMed  Google Scholar 

  20. Wu Y, Zhu B, Chen Z, Duan J, Luo A, Yang L, Yang C (2021) New insights into the comorbidity of coronary heart disease and depression. Curr Probl Cardiol 46(3):100413

    Article  PubMed  Google Scholar 

  21. Najjar S, Pearlman DM, Devinsky O, Najjar A, Zagzag D (2013) Neurovascular unit dysfunction with blood-brain barrier hyperpermeability contributes to major depressive disorder: a review of clinical and experimental evidence. J Neuroinflammation 10(1):1–16

    Article  Google Scholar 

  22. Petralia MC, Mazzon E, Fagone P, Basile MS, Lenzo V, Quattropani MC, Di Nuovo S, Bendtzen K et al (2020) The cytokine network in the pathogenesis of major depressive disorder. Close to translation? Autoimmun Rev 19(5):102504

    Article  CAS  PubMed  Google Scholar 

  23. Wu S, Yin Y, Du L (2022) Blood–brain barrier dysfunction in the pathogenesis of major depressive disorder. Cell Mol Neurobiol 42(8):2571–2591

  24. Reshma S, Megha KB, Amir S, Rukhiya S, Mohanan PV (2023) Blood brain barrier-on-a-chip to model neurological diseases. J Drug Deliv Sci Technol 80:104174

  25. Kadry H, Noorani B, Cucullo L (2020) A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS 17(1):1–24

    Article  Google Scholar 

  26. Tajes M, Ramos-Fernández E, Weng-Jiang X, Bosch-Morato M, Guivernau B, Eraso-Pichot A, Salvador B, Fernandez-Busquets X et al (2014) The blood-brain barrier: structure, function and therapeutic approaches to cross it. Mol Membr Biol 31(5):152–167

    Article  CAS  PubMed  Google Scholar 

  27. Wang D, Chen F, Han Z, Yin Z, Ge X, Lei P (2021) Relationship between amyloid-β deposition and blood–brain barrier dysfunction in Alzheimer’s disease. Front Cell Neurosci 15:695479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nishihara H, Perriot S, Gastfriend BD, Steinfort M, Cibien C, Soldati S, Matsuo K, Guimbal S et al (2022) Intrinsic blood–brain barrier dysfunction contributes to multiple sclerosis pathogenesis. Brain 145(12):4334–4348

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bernardo-Castro S, Sousa JA, Brás A, Cecília C, Rodrigues B, Almendra L, Machado C, Santo G et al (2020) Pathophysiology of blood–brain barrier permeability throughout the different stages of ischemic stroke and its implication on hemorrhagic transformation and recovery. Front Neurol 11:1605

    Article  Google Scholar 

  30. Menard C, Pfau ML, Hodes GE, Kana V, Wang VX, Bouchard S, Takahashi A, Flanigan ME et al (2017) Social stress induces neurovascular pathology promoting depression. Nat Neurosci 20(12):1752–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dion-Albert L, Cadoret A, Doney E, Kaufmann FN, Dudek KA, Daigle B, Parise LF, Cathomas F et al (2022) Vascular and blood-brain barrier-related changes underlie stress responses and resilience in female mice and depression in human tissue. Nat Commun 13(1):164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kealy J, Greene C, Campbell M (2020) Blood-brain barrier regulation in psychiatric disorders. Neurosci Lett 726:133664

    Article  CAS  PubMed  Google Scholar 

  33. Dion-Albert L, Binder LB, Daigle B, Hong-Minh A, Lebel M, Menard C (2022) Sex differences in the blood–brain barrier: implications for mental health. Front Neuroendocrinol 65:100989

    Article  CAS  PubMed  Google Scholar 

  34. Keaney J, Campbell M (2015) The dynamic blood–brain barrier. FEBS J 282(21):4067–4079

    Article  CAS  PubMed  Google Scholar 

  35. Sweeney MD, Sagare AP, Zlokovic BV (2018) Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol 14(3):133–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Knox EG, Aburto MR, Clarke G, Cryan JF, O’Driscoll CM (2022) The blood-brain barrier in aging and neurodegeneration. Mol Psychiatry 27(6):2659–2673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Marchi N, Cavaglia M, Fazio V, Bhudia S, Hallene K, Janigro D (2004) Peripheral markers of blood–brain barrier damage. Clin Chim Acta 342(1-2):1–12

    Article  CAS  PubMed  Google Scholar 

  38. Abbott NJ, Rönnbäck L, Hansson E (2006) Astrocyte–endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 7(1):41–53

    Article  CAS  PubMed  Google Scholar 

  39. Wu J, He Y, Yang Z, Guo C, Luo Q, Zhou W, Chen S, Li A et al (2014) 3D BrainCV: simultaneous visualization and analysis of cells and capillaries in a whole mouse brain with one-micron voxel resolution. Neuroimage 87:199–208

    Article  PubMed  Google Scholar 

  40. Iadecola C (2017) The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron 96(1):17–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Daneman R (2012) The blood–brain barrier in health and disease. Ann Neurol 72(5):648–672

    Article  CAS  PubMed  Google Scholar 

  42. Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood–brain barrier. Neurobiol Dis 37(1):13–25

    Article  CAS  PubMed  Google Scholar 

  43. Pardridge WM (2015) Blood–brain barrier endogenous transporters as therapeutic targets: a new model for small molecule CNS drug discovery. Expert Opin Ther Targets 19(8):1059–1072

    Article  CAS  PubMed  Google Scholar 

  44. Zhang Y, Pardridge WM (2001) Rapid transferrin efflux from brain to blood across the blood–brain barrier. J Neurochem 76(5):1597–1600

    Article  CAS  PubMed  Google Scholar 

  45. Pardridge WM, Eisenberg J, Yang J (1985) Human blood—brain barrier insulin receptor. J Neurochem 44(6):1771–1778

    Article  CAS  PubMed  Google Scholar 

  46. Hindle SJ, Munji RN, Dolghih E, Gaskins G, Orng S, Ishimoto H, Soung A, DeSalvo M et al (2017) Evolutionarily conserved roles for blood-brain barrier xenobiotic transporters in endogenous steroid partitioning and behavior. Cell Rep 21(5):1304–1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Larsen MJ, Martin RD, Byrne EM (2014) Recent advances in delivery through the blood-brain barrier. Curr Top Med Chem 14(9):1148–1160

    Article  CAS  PubMed  Google Scholar 

  48. Daneman R, Prat A (2015) The blood–brain barrier. Cold Spring Harb Perspect Biol 7(1):a020412

    Article  PubMed  PubMed Central  Google Scholar 

  49. Abbott NJ (2005) Dynamics of CNS barriers: evolution, differentiation, and modulation. Cell Mol Neurobiol 25(1):5–23

    Article  PubMed  Google Scholar 

  50. Aird WC (2007) Phenotypic heterogeneity of the endothelium: II. Represent Vasc Beds Circ Res 100(2):174–190

    CAS  Google Scholar 

  51. Aird WC (2007) Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res 100(2):158–173

    Article  CAS  PubMed  Google Scholar 

  52. Ashby JW, Mack JJ (2021) Endothelial control of cerebral blood flow. Am J Pathol 191(11):1906–1916

    Article  CAS  PubMed  Google Scholar 

  53. Ballabh P, Braun A, Nedergaard M (2004) The blood–brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 16(1):1–13

    Article  CAS  PubMed  Google Scholar 

  54. Abbott NJ, Romero IA (1996) Transporting therapeutics across the blood-brain barrier. Mol Med Today 2(3):106–113

    Article  CAS  PubMed  Google Scholar 

  55. Abbott NJ, Barnes D, Begley D, Betz A, Brightman M, Brooks D, Cserr H, Fraser P et al (2012) Physiology and pharmacology of the blood-brain barrier, vol 103. Springer Science & Business Media

    Google Scholar 

  56. Grant GA, Abbott NJ, Janigro D (1998) Understanding the physiology of the blood-brain barrier: in vitro models. Physiology 13(6):287–293

    Article  CAS  Google Scholar 

  57. Grieb P, Forster R, Strome D, Goodwin C, Pape P (1985) O2 exchange between blood and brain tissues studied with 18O2 indicator-dilution technique. J Appl Physiol 58(6):1929–1941

    Article  CAS  PubMed  Google Scholar 

  58. Liebner S, Czupalla CJ, Wolburg H (2011) Current concepts of blood-brain barrier development. Int J Dev Biol 55(4-5):467–476

    Article  CAS  PubMed  Google Scholar 

  59. Betz AL, Goldstein GW (1978) Polarity of the blood-brain barrier: neutral amino acid transport into isolated brain capillaries. Science 202(4364):225–227

    Article  CAS  PubMed  Google Scholar 

  60. Wolburg H, Lippoldt A (2002) Tight junctions of the blood–brain barrier: development, composition and regulation. Vasc Pharmacol 38(6):323–337

    Article  CAS  Google Scholar 

  61. Hartsock A, Nelson WJ (2008) Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta (BBA)-Biomembranes 1778(3):660–669

    Article  CAS  PubMed  Google Scholar 

  62. Fanning AS, Little BP, Rahner C, Utepbergenov D, Walther Z, Anderson JM (2007) The unique-5 and-6 motifs of ZO-1 regulate tight junction strand localization and scaffolding properties. Mol Biol Cell 18(3):721–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Liebner S, Fischmann A, Rascher G, Duffner F, Grote E-H, Kalbacher H, Wolburg H (2000) Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta Neuropathol 100(3):323–331

    Article  CAS  PubMed  Google Scholar 

  64. Morita K, Sasaki H, Furuse M, Tsukita S (1999) Endothelial claudin: claudin-5/TMVCF constitutes tight junction strands in endothelial cells. J Cell Biol 147(1):185–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Greene C, Hanley N, Campbell M (2019) Claudin-5: gatekeeper of neurological function. Fluids Barriers CNS 16(1):1–15

    Article  Google Scholar 

  66. Oldendorf WH, Cornford ME, Brown WJ (1977) The large apparent work capability of the blood-brain barrier: a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann Neurol 1(5):409–417

    Article  CAS  PubMed  Google Scholar 

  67. Liu WY, Wang ZB, Zhang LC, Wei X, Li L (2012) Tight junction in blood-brain barrier: an overview of structure, regulation, and regulator substances. CNS Neurosci Ther 18(8):609–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Greene C, Hanley N, Campbell M (2020) Blood-brain barrier associated tight junction disruption is a hallmark feature of major psychiatric disorders. Transl Psychiatry 10(1):1–10

    Article  Google Scholar 

  69. Welcome MO, Mastorakis NE (2020) Stress-induced blood brain barrier disruption: molecular mechanisms and signaling pathways. Pharmacol Res 157:104769

    Article  CAS  PubMed  Google Scholar 

  70. Matter K, Balda MS (2003) Signalling to and from tight junctions. Nat Rev Mol Cell Biol 4(3):225–237

    Article  CAS  PubMed  Google Scholar 

  71. Bazzoni G, Dejana E (2004) Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiol Rev 84(3):869–901

    Article  CAS  PubMed  Google Scholar 

  72. Gao Y-Z, Guo S-Y, Yin Q-Z, Cui X-Q, Hisamitsu T, Jiang X-H (2007) Possible involvement of integrin signaling pathway in the process of recovery from restraint stress in rats. Neurosci Bull 23(4):229–235

    Article  CAS  PubMed  Google Scholar 

  73. Sántha P, Veszelka S, Hoyk Z, Mészáros M, Walter FR, Tóth AE, Kiss L, Kincses A et al (2016) Restraint stress-induced morphological changes at the blood-brain barrier in adult rats. Front Mol Neurosci 8:88

    Article  PubMed  PubMed Central  Google Scholar 

  74. Sun J, Wang F, Hong G, Pang M, Xu H, Li H, Tian F, Fang R et al (2016) Antidepressant-like effects of sodium butyrate and its possible mechanisms of action in mice exposed to chronic unpredictable mild stress. Neurosci Lett 618:159–166

    Article  CAS  PubMed  Google Scholar 

  75. Cheng Y, Desse S, Martinez A, Worthen RJ, Jope RS, Beurel E (2018) TNFα disrupts blood brain barrier integrity to maintain prolonged depressive-like behavior in mice. Brain Behav Immun 69:556–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Xu G, Li Y, Ma C, Wang C, Sun Z, Shen Y, Liu L, Li S et al (2019) Restraint stress induced hyperpermeability and damage of the blood-brain barrier in the amygdala of adult rats. Front Mol Neurosci 12:32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Taler M, Aronovich R, Henry Hornfeld S, Dar S, Sasson E, Weizman A, Hochman E (2021) Regulatory effect of lithium on hippocampal blood-brain barrier integrity in a rat model of depressive-like behavior. Bipolar Disord 23(1):55–65

    Article  CAS  PubMed  Google Scholar 

  78. Meng C, Feng S, Hao Z, Dong C, Liu H (2022) Antibiotics exposure attenuates chronic unpredictable mild stress-induced anxiety-like and depression-like behavior. Psychoneuroendocrinology 136:105620

    Article  CAS  PubMed  Google Scholar 

  79. Tang CF, Wang CY, Wang JH, Wang QN, Li SJ, Wang HO et al (2022) Short-chain fatty acids ameliorate depressive-like behaviors of high fructose-fed mice by rescuing hippocampal neurogenesis decline and blood–brain barrier damage. Nutrients 14(9):1882

  80. Kılıç F, Işık Ü, Demirdaş A, Doğuç DK, Bozkurt M (2020) Serum zonulin and claudin-5 levels in patients with bipolar disorder. J Affect Disord 266:37–42

    Article  PubMed  Google Scholar 

  81. Wu H, Wang J, Teng T, Yin B, He Y, Jiang Y, Liu X, Yu Y et al (2023) Biomarkers of intestinal permeability and blood-brain barrier permeability in adolescents with major depressive disorder. J Affect Disord 323:659–666

    Article  CAS  PubMed  Google Scholar 

  82. Hochman E, Taler M, Flug R, Gur S, Dar S, Bormant G et al (2023) Serum claudin-5 levels among patients with unipolar and bipolar depression in relation to the pro-inflammatory cytokine tumor necrosis factor-alpha levels. Brain Behav Immun 109:162–167

  83. Treccani G, Schlegelmilch A-L, Schultz N, Herzog DP, Bessa JM, Sotiropoulos I, Müller MB, Wennström M (2021) Hippocampal NG2+ pericytes in chronically stressed rats and depressed patients: a quantitative study. Stress 24(3):353–358

    Article  CAS  PubMed  Google Scholar 

  84. Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, Furuse M, Tsukita S (2003) Size-selective loosening of the blood-brain barrier in claudin-5–deficient mice. J Cell Biol 161(3):653–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sims DE (1986) The pericyte—a review. Tissue Cell 18(2):153–174

    Article  CAS  PubMed  Google Scholar 

  86. Armulik A, Genové G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21(2):193–215

    Article  CAS  PubMed  Google Scholar 

  87. Daneman R, Zhou L, Kebede AA, Barres BA (2010) Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature 468(7323):562–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Greene C (2018) The blood-brain barrier in neuropsychiatric disorders. Trinity College Dublin

    Google Scholar 

  89. Peppiatt CM, Howarth C, Mobbs P, Attwell D (2006) Bidirectional control of CNS capillary diameter by pericytes. Nature 443(7112):700–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sagare AP, Bell RD, Zhao Z, Ma Q, Winkler EA, Ramanathan A, Zlokovic BV (2013) Pericyte loss influences Alzheimer-like neurodegeneration in mice. Nat Commun 4(1):1–14

    Article  Google Scholar 

  91. Nakagomi T, Kubo S, Nakano-Doi A, Sakuma R, Lu S, Narita A, Kawahara M, Taguchi A et al (2015) Brain vascular pericytes following ischemia have multipotential stem cell activity to differentiate into neural and vascular lineage cells. Stem Cells 33(6):1962–1974

    Article  CAS  PubMed  Google Scholar 

  92. Attwell D, Mishra A, Hall CN, O’Farrell FM, Dalkara T (2016) What is a pericyte? J Cereb Blood Flow Metab 36(2):451–455

    Article  CAS  PubMed  Google Scholar 

  93. Su X, Huang L, Qu Y, Xiao D, Mu D (2019) Pericytes in cerebrovascular diseases: an emerging therapeutic target. Front Cell Neurosci 13:519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lendahl U, Nilsson P, Betsholtz C (2019) Emerging links between cerebrovascular and neurodegenerative diseases—a special role for pericytes. EMBO Rep 20(11):e48070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Balabanov R, Washington R, Wagnerova J, Dore-Duffy P (1996) CNS microvascular pericytes express macrophage-like function, cell surface integrin αM, and macrophage marker ED-2. Microvasc Res 52(2):127–142

    Article  CAS  PubMed  Google Scholar 

  96. Sengillo JD, Winkler EA, Walker CT, Sullivan JS, Johnson M, Zlokovic BV (2013) Deficiency in mural vascular cells coincides with blood–brain barrier disruption in Alzheimer’s disease. Brain Pathol 23(3):303–310

    Article  PubMed  Google Scholar 

  97. Liu J, Wang Y-H, Li W, Liu L, Yang H, Meng P, Han Y-S (2019) Structural and functional damage to the hippocampal neurovascular unit in diabetes-related depression. Neural Regen Res 14(2):289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Dohgu S, Takata F, Matsumoto J, Kimura I, Yamauchi A, Kataoka Y (2019) Monomeric α-synuclein induces blood–brain barrier dysfunction through activated brain pericytes releasing inflammatory mediators in vitro. Microvasc Res 124:61–66

    Article  CAS  PubMed  Google Scholar 

  99. Armulik A, Genové G, Mäe M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J et al (2010) Pericytes regulate the blood–brain barrier. Nature 468(7323):557–561

    Article  CAS  PubMed  Google Scholar 

  100. Padel T, Roth M, Gaceb A, Li J-Y, Björkqvist M, Paul G (2018) Brain pericyte activation occurs early in Huntington’s disease. Exp Neurol 305:139–150

    Article  CAS  PubMed  Google Scholar 

  101. Dalkara T, Alarcon-Martinez L, Yemisci M (2019) Pericytes in ischemic stroke. Pericyte Biol Dis:189–213

  102. Leal-Campanario R, Alarcon-Martinez L, Rieiro H, Martinez-Conde S, Alarcon-Martinez T, Zhao X, LaMee J, Popp PJO et al (2017) Abnormal capillary vasodynamics contribute to ictal neurodegeneration in epilepsy. Sci Rep 7(1):43276

    Article  Google Scholar 

  103. Miners J, Kehoe P, Love S, Zetterberg H, Blennow K (2019) CSF evidence of pericyte damage in Alzheimer’s disease is associated with markers of blood-brain barrier dysfunction and disease pathology. Alzheimers Res Ther 11(1):1–6

    Article  CAS  Google Scholar 

  104. Kaushik DK, Bhattacharya A, Lozinski BM, Wee Yong V (2021) Pericytes as mediators of infiltration of macrophages in multiple sclerosis. J Neuroinflammation 18:1–13

    Article  Google Scholar 

  105. Cheng J, Korte N, Nortley R, Sethi H, Tang Y, Attwell D (2018) Targeting pericytes for therapeutic approaches to neurological disorders. Acta Neuropathol 136(4):507–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Persidsky Y, Hill J, Zhang M, Dykstra H, Winfield M, Reichenbach NL, Potula R, Mukherjee A et al (2016) Dysfunction of brain pericytes in chronic neuroinflammation. J Cereb Blood Flow Metab 36(4):794–807

    Article  CAS  PubMed  Google Scholar 

  107. Kabba JA, Xu Y, Christian H, Ruan W, Chenai K, Xiang Y, Zhang L, Saavedra JM et al (2018) Microglia: housekeeper of the central nervous system. Cell Mol Neurobiol 38(1):53–71

    Article  CAS  PubMed  Google Scholar 

  108. Yang T, Guo R, Zhang F (2019) Brain perivascular macrophages: recent advances and implications in health and diseases. CNS Neurosci Ther 25(12):1318–1328

    Article  PubMed  PubMed Central  Google Scholar 

  109. Jurga AM, Paleczna M, Kuter KZ (2020) Overview of general and discriminating markers of differential microglia phenotypes. Front Cell Neurosci 14:198

    Article  PubMed  PubMed Central  Google Scholar 

  110. Thurgur H, Pinteaux E (2019) Microglia in the neurovascular unit: blood–brain barrier–microglia interactions after central nervous system disorders. Neuroscience 405:55–67

    Article  CAS  PubMed  Google Scholar 

  111. Kettenmann H, Hanisch U-K, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91(2):461–553

    Article  CAS  PubMed  Google Scholar 

  112. Ransohoff RM (2016) A polarizing question: do M1 and M2 microglia exist? Nat Neurosci 19(8):987–991

    Article  CAS  PubMed  Google Scholar 

  113. Zhang L, Zhang J, You Z (2018) Switching of the microglial activation phenotype is a possible treatment for depression disorder. Front Cell Neurosci 12:306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Tynan RJ, Weidenhofer J, Hinwood M, Cairns MJ, Day TA, Walker FR (2012) A comparative examination of the anti-inflammatory effects of SSRI and SNRI antidepressants on LPS stimulated microglia. Brain Behav Immun 26(3):469–479

    Article  CAS  PubMed  Google Scholar 

  115. Frank MG, Baratta MV, Sprunger DB, Watkins LR, Maier SF (2007) Microglia serve as a neuroimmune substrate for stress-induced potentiation of CNS pro-inflammatory cytokine responses. Brain Behav Immun 21(1):47–59

    Article  CAS  PubMed  Google Scholar 

  116. Sugama S, Fujita M, Hashimoto M, Conti B (2007) Stress induced morphological microglial activation in the rodent brain: involvement of interleukin-18. Neuroscience 146(3):1388–1399

    Article  CAS  PubMed  Google Scholar 

  117. Tong L, Gong Y, Wang P, Hu W, Wang J, Chen Z, Zhang W, Huang C (2017) Microglia loss contributes to the development of major depression induced by different types of chronic stresses. Neurochem Res 42:2698–2711

    Article  CAS  PubMed  Google Scholar 

  118. Wang Y-L, Han Q-Q, Gong W-Q, Pan D-H, Wang L-Z, Hu W, Yang M, Li B et al (2018) Microglial activation mediates chronic mild stress-induced depressive-and anxiety-like behavior in adult rats. J Neuroinflammation 15(1):1–14

    Article  Google Scholar 

  119. Zhang C, Zhang Y-P, Li Y-Y, Liu B-P, Wang H-Y, Li K-W, Zhao S, Song C (2019) Minocycline ameliorates depressive behaviors and neuro-immune dysfunction induced by chronic unpredictable mild stress in the rat. Behav Brain Res 356:348–357

    Article  CAS  PubMed  Google Scholar 

  120. Fronza MG, Baldinotti R, Fetter J, Rosa SG, Sacramento M, Nogueira CW, Alves D, Praticò D et al (2022) Beneficial effects of QTC-4-MeOBnE in an LPS-induced mouse model of depression and cognitive impairments: the role of blood-brain barrier permeability, NF-κB signaling, and microglial activation. Brain Behav Immun 99:177–191

    Article  CAS  PubMed  Google Scholar 

  121. Park HJ, Shim HS, An K, Starkweather A, Kim KS, Shim I (2015) IL-4 inhibits IL-1β-induced depressive-like behavior and central neurotransmitter alterations. Mediators of inflammation, 2015

  122. Zhang J, Xie X, Tang M, Zhang J, Zhang B, Zhao Q, Han Y, Yan W et al (2017) Salvianolic acid B promotes microglial M2-polarization and rescues neurogenesis in stress-exposed mice. Brain Behav Immun 66:111–124

    Article  CAS  PubMed  Google Scholar 

  123. Duan C-M, Zhang J-R, Wan T-F, Wang Y, Chen H-S, Liu L (2020) SRT2104 attenuates chronic unpredictable mild stress-induced depressive-like behaviors and imbalance between microglial M1 and M2 phenotypes in the mice. Behav Brain Res 378:112296

    Article  CAS  PubMed  Google Scholar 

  124. Li J, Wang H, Du C, Jin X, Geng Y, Han B, Ma Q, Li Q et al (2020) hUC-MSCs ameliorated CUMS-induced depression by modulating complement C3 signaling-mediated microglial polarization during astrocyte-microglia crosstalk. Brain Res Bull 163:109–119

    Article  CAS  PubMed  Google Scholar 

  125. Bayer TA, Buslei R, Havas L, Falkai P (1999) Evidence for activation of microglia in patients with psychiatric illnesses. Neurosci Lett 271(2):126–128

    Article  CAS  PubMed  Google Scholar 

  126. Torres-Platas SG, Cruceanu C, Chen GG, Turecki G, Mechawar N (2014) Evidence for increased microglial priming and macrophage recruitment in the dorsal anterior cingulate white matter of depressed suicides. Brain Behav Immun 42:50–59

    Article  CAS  PubMed  Google Scholar 

  127. Huang X, Hussain B, Chang J (2021) Peripheral inflammation and blood–brain barrier disruption: effects and mechanisms. CNS Neurosci Ther 27(1):36–47

    Article  CAS  PubMed  Google Scholar 

  128. Labus J, Wöltje K, Stolte KN, Häckel S, Kim KS, Hildmann A, Danker K (2018) IL-1β promotes transendothelial migration of PBMCs by upregulation of the FN/α5β1 signalling pathway in immortalised human brain microvascular endothelial cells. Exp Cell Res 373(1-2):99–111

    Article  CAS  PubMed  Google Scholar 

  129. Rochfort KD, Cummins PM (2015) The blood–brain barrier endothelium: a target for pro-inflammatory cytokines. Biochem Soc Trans 43(4):702–706

    Article  CAS  PubMed  Google Scholar 

  130. Nishioku T, Matsumoto J, Dohgu S, Sumi N, Miyao K, Takata F, Shuto H, Yamauchi A et al (2010) Tumor necrosis factor-α mediates the blood–brain barrier dysfunction induced by activated microglia in mouse brain microvascular endothelial cells. J Pharmacol Sci 112(2):251–254

    Article  CAS  PubMed  Google Scholar 

  131. Benatti C, Blom MCJ, Rigillo G, Alboni S, Zizzi F, Torta R, Brunello N, Tascedda F (2016) Disease-induced neuroinflammation and depression. CNS Neurol Disord Drug Targets 15(4):414–433

    Article  CAS  PubMed  Google Scholar 

  132. Sumi N, Nishioku T, Takata F, Matsumoto J, Watanabe T, Shuto H, Yamauchi A, Dohgu S et al (2010) Lipopolysaccharide-activated microglia induce dysfunction of the blood–brain barrier in rat microvascular endothelial cells co-cultured with microglia. Cell Mol Neurobiol 30:247–253

    Article  CAS  PubMed  Google Scholar 

  133. Kacimi R, Giffard RG, Yenari MA (2011) Endotoxin-activated microglia injure brain derived endothelial cells via NF-κB, JAK-STAT and JNK stress kinase pathways. J Inflamm 8:1–15

    Article  Google Scholar 

  134. Madrigal JL, Moro MA, Lizasoain I, Lorenzo P, Leza JC (2002) Stress-induced increase in extracellular sucrose space in rats is mediated by nitric oxide. Brain Res 938(1-2):87–91

    Article  CAS  PubMed  Google Scholar 

  135. Hinwood M, Tynan RJ, Charnley JL, Beynon SB, Day TA, Walker FR (2013) Chronic stress induced remodeling of the prefrontal cortex: structural re-organization of microglia and the inhibitory effect of minocycline. Cereb Cortex 23(8):1784–1797

    Article  PubMed  Google Scholar 

  136. Wang Y-L, Han Q-Q, Gong W-Q, Pan D-H, Wang L-Z, Hu W, Yang M, Li B et al (2018) Microglial activation mediates chronic mild stress-induced depressive-and anxiety-like behavior in adult rats. J Neuroinflammation 15:1–14

    Article  Google Scholar 

  137. Fumagalli M, Lombardi M, Gressens P, Verderio C (2018) How to reprogram microglia toward beneficial functions. Glia 66(12):2531–2549

    Article  PubMed  PubMed Central  Google Scholar 

  138. Huang M, Malovic E, Ealy A, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG (2023) Microglial immune regulation by epigenetic reprogramming through histone H3K27 acetylation in neuroinflammation. Front Immunol 14:1052925

  139. Lehmann ML, Weigel TK, Poffenberger CN, Herkenham M (2019) The behavioral sequelae of social defeat require microglia and are driven by oxidative stress in mice. J Neurosci 39(28):5594–5605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Lehmann ML, Weigel TK, Cooper HA, Elkahloun AG, Kigar SL, Herkenham M (2018) Decoding microglia responses to psychosocial stress reveals blood-brain barrier breakdown that may drive stress susceptibility. Sci Rep 8(1):11240

    Article  PubMed  PubMed Central  Google Scholar 

  141. Michelucci A, Heurtaux T, Grandbarbe L, Morga E, Heuschling P (2009) Characterization of the microglial phenotype under specific pro-inflammatory and anti-inflammatory conditions: effects of oligomeric and fibrillar amyloid-β. J Neuroimmunol 210(1-2):3–12

    Article  CAS  PubMed  Google Scholar 

  142. Kang R, Gamdzyk M, Lenahan C, Tang J, Tan S, Zhang JH (2020) The dual role of microglia in blood-brain barrier dysfunction after stroke. Curr Neuropharmacol 18(12):1237–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Garcia JM, Stillings SA, Leclerc JL, Phillips H, Edwards NJ, Robicsek SA, Hoh BL, Blackburn S et al (2017) Role of interleukin-10 in acute brain injuries. Front Neurol 8:244

    Article  PubMed  PubMed Central  Google Scholar 

  144. Driessler F, Venstrom K, Sabat R, Asadullah K, Schottelius A (2004) Molecular mechanisms of interleukin-10-mediated inhibition of NF-κ B activity: a role for p50. Clin Exp Immunol 135(1):64–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Lin R, Chen F, Wen S, Teng T, Pan Y, Huang H (2018) Interleukin-10 attenuates impairment of the blood-brain barrier in a severe acute pancreatitis rat model. J Inflamm 15(1):1–12

    Article  Google Scholar 

  146. Han A, Yeo H, Park M-J, Kim SH, Choi HJ, Hong C-W, Kwon M-S (2015) IL-4/10 prevents stress vulnerability following imipramine discontinuation. J Neuroinflammation 12(1):1–16

    Article  Google Scholar 

  147. Ronaldson PT, Davis TP (2020) Regulation of blood–brain barrier integrity by microglia in health and disease: a therapeutic opportunity. J Cereb Blood Flow Metab 40(1_suppl):S6–S24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Hanisch U-K, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10(11):1387–1394

    Article  CAS  PubMed  Google Scholar 

  149. Röcken M, Racke M, Shevach EM (1996) IL-4-induced immune deviation as antigen-specific therapy for inflammatory autoimmune disease. Immunol Today 17(5):225–231

    Article  PubMed  Google Scholar 

  150. Bassett B, Subramaniyam S, Fan Y, Varney S, Pan H, Carneiro AM, Chung CY (2021) Minocycline alleviates depression-like symptoms by rescuing decrease in neurogenesis in dorsal hippocampus via blocking microglia activation/phagocytosis. Brain Behav Immun 91:519–530

    Article  CAS  PubMed  Google Scholar 

  151. Guo D, Xu Y, Liu Z, Wang Y, Xu X, Li C, Li S, Zhang J et al (2023) IGF2 inhibits hippocampal over-activated microglia and alleviates depression-like behavior in LPS-treated male mice. Brain Res Bull 194:1–12

    Article  CAS  PubMed  Google Scholar 

  152. Verkhratsky A, Butt A (2013) Glial physiology and pathophysiology. John Wiley & Sons

    Book  Google Scholar 

  153. Abott N (2002) Astrocyte-endothelial interactions and blood-brain permeability. J Anat 200:629–638

    Article  Google Scholar 

  154. Haseloff R, Blasig I, Bauer H-C, Bauer H (2005) In search of the astrocytic factor (s) modulating blood–brain barrier functions in brain capillary endothelial cells in vitro. Cell Mol Neurobiol 25(1):25–39

    Article  CAS  PubMed  Google Scholar 

  155. Xie X-h, Lai W-t, Xu S-x, Di Forti M, Zhang J-y, Chen M-m, Yao L-h, Wang P et al (2023) Hyper-inflammation of astrocytes in patients of major depressive disorder: evidence from serum astrocyte-derived extracellular vesicles. Brain Behav Immun 109:51–62

    Article  CAS  PubMed  Google Scholar 

  156. Vainchtein ID, Molofsky AV (2020) Astrocytes and microglia: in sickness and in health. Trends Neurosci 43(3):144–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Rose CF, Verkhratsky A, Parpura V (2013) Astrocyte glutamine synthetase: pivotal in health and disease. Biochem Soc Trans 41(6):1518–1524

    Article  CAS  PubMed  Google Scholar 

  158. Rajkowska G, Stockmeier AC (2013) Astrocyte pathology in major depressive disorder: insights from human postmortem brain tissue. Curr Drug Targets 14(11):1225–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Di Benedetto B, Malik VA, Begum S, Jablonowski L, Gómez-González GB, Neumann ID, Rupprecht R (2016) Fluoxetine requires the endfeet protein aquaporin-4 to enhance plasticity of astrocyte processes. Front Cell Neurosci 10:8

    Article  PubMed  PubMed Central  Google Scholar 

  160. Ghaemi A, Alizadeh L, Babaei S, Jafarian M, Khaleghi Ghadiri M, Meuth SG, Kovac S, Gorji A (2018) Astrocyte-mediated inflammation in cortical spreading depression. Cephalalgia 38(4):626–638

    Article  PubMed  Google Scholar 

  161. Banasr M, Duman RS (2008) Glial loss in the prefrontal cortex is sufficient to induce depressive-like behaviors. Biol Psychiatry 64(10):863–870

    Article  PubMed  PubMed Central  Google Scholar 

  162. Jang S, Suh SH, Yoo H-S, Lee Y-M, Oh S (2008) Changes in iNOS, GFAP and NR1 expression in various brain regions and elevation of sphingosine-1-phosphate in serum after immobilized stress. Neurochem Res 33(5):842–851

    Article  CAS  PubMed  Google Scholar 

  163. Kong H, Sha L-l, Fan Y, Xiao M, Ding J-h, Wu J, Hu G (2009) Requirement of AQP4 for antidepressive efficiency of fluoxetine: implication in adult hippocampal neurogenesis. Neuropsychopharmacology 34(5):1263–1276

    Article  CAS  PubMed  Google Scholar 

  164. Gajkowska B, Kosson A, Sacharczuk M, Kosson P, Lipkowski AW (2011) Blood-brain barrier permeability differentiates Sadowski mouse lines of high and low stress-induced analgesia. Electron microscopy analysis. Folia Neuropathol 49(4):311–318

    PubMed  Google Scholar 

  165. Imbe H, Kimura A, Donishi T, Kaneoke Y (2012) Chronic restraint stress decreases glial fibrillary acidic protein and glutamate transporter in the periaqueductal gray matter. Neuroscience 223:209–218

    Article  CAS  PubMed  Google Scholar 

  166. Kong H, Zeng XN, Fan Y, Yuan ST, Ge S, Xie WP, Wang H, Hu G (2014) Aquaporin-4 knockout exacerbates corticosterone-induced depression by inhibiting astrocyte function and hippocampal neurogenesis. CNS Neurosci Ther 20(5):391–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Liu C, Yang T-Q, Zhou Y-D, Shen Y (2022) Reduced astrocytic mGluR5 in the hippocampus is associated with stress-induced depressive-like behaviors in mice. Neurosci Lett 784:136766

    Article  CAS  PubMed  Google Scholar 

  168. Miguel-Hidalgo JJ, Baucom C, Dilley G, Overholser JC, Meltzer HY, Stockmeier CA, Rajkowska G (2000) Glial fibrillary acidic protein immunoreactivity in the prefrontal cortex distinguishes younger from older adults in major depressive disorder. Biol Psychiatry 48(8):861–873

    Article  CAS  PubMed  Google Scholar 

  169. Davis S, Thomas A, Perry R, Oakley A, Kalaria R, O’brien J (2002) Glial fibrillary acidic protein in late life major depressive disorder: an immunocytochemical study. J Neurol Neurosurg Psychiatry 73(5):556–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Iwamoto K, Kakiuchi C, Bundo M, Ikeda K, Kato T (2004) Molecular characterization of bipolar disorder by comparing gene expression profiles of postmortem brains of major mental disorders. Mol Psychiatry 9(4):406–416

    Article  CAS  PubMed  Google Scholar 

  171. Si X, Miguel-Hidalgo JJ, O'Dwyer G, Stockmeier CA, Rajkowska G (2004) Age-dependent reductions in the level of glial fibrillary acidic protein in the prefrontal cortex in major depression. Neuropsychopharmacology 29(11):2088–2096

    Article  CAS  PubMed  Google Scholar 

  172. Miguel-Hidalgo JJ, Waltzer R, Whittom AA, Austin MC, Rajkowska G, Stockmeier CA (2010) Glial and glutamatergic markers in depression, alcoholism, and their comorbidity. J Affect Disord 127(1-3):230–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Rajkowska G, Hughes J, Stockmeier CA, Miguel-Hidalgo JJ, Maciag D (2013) Coverage of blood vessels by astrocytic endfeet is reduced in major depressive disorder. Biol Psychiatry 73(7):613–621

    Article  PubMed  Google Scholar 

  174. Cobb JA, O’Neill K, Milner J, Mahajan GJ, Lawrence TJ, May WL, Miguel-Hidalgo J, Rajkowska G et al (2016) Density of GFAP-immunoreactive astrocytes is decreased in left hippocampi in major depressive disorder. Neuroscience 316:209–220

    Article  CAS  PubMed  Google Scholar 

  175. Westermair AL, Munz M, Schaich A, Nitsche S, Willenborg B, Muñoz Venegas LM, Willenborg C, Schunkert H et al (2018) Association of genetic variation at aqp4 locus with vascular depression. Biomolecules 8(4):164

    Article  PubMed  PubMed Central  Google Scholar 

  176. Gur S, Taler M, Bormant G, Blattberg D, Nitzan U, Vaknin-Dembinsky A, Brill L, Krivoy A et al (2020) Lack of association between unipolar or bipolar depression and serum aquaporin-4 autoantibodies. Brain Behav Immun 88:930–934

    Article  CAS  PubMed  Google Scholar 

  177. Chandley MJ, Szebeni K, Szebeni A, Crawford J, Stockmeier CA, Turecki G, Miguel-Hidalgo JJ, Ordway GA (2013) Gene expression deficits in pontine locus coeruleus astrocytes in men with major depressive disorder. J Psychiatry Neurosci 38(4):276–284

    Article  PubMed  PubMed Central  Google Scholar 

  178. Schroeter ML, Abdul-Khaliq H, Diefenbacher A, Blasig IE (2002) S100B is increased in mood disorders and may be reduced by antidepressive treatment. Neuroreport 13(13):1675–1678

    Article  CAS  PubMed  Google Scholar 

  179. Arolt V, Peters M, Erfurth A, Wiesmann M, Missler U, Rudolf S, Kirchner H, Rothermundt M (2003) S100B and response to treatment in major depression: a pilot study. Eur Neuropsychopharmacol 13(4):235–239

    Article  CAS  PubMed  Google Scholar 

  180. Arora P, Sagar R, Mehta M, Pallavi P, Sharma S, Mukhopadhyay AK (2019) Serum S100B levels in patients with depression. Indian J Psychiatry 61(1):70

    PubMed  PubMed Central  Google Scholar 

  181. Pekny M, Stanness KA, Eliasson C, Betsholtz C, Janigro D (1998) Impaired induction of blood-brain barrier properties in aortic endothelial cells by astrocytes from GFAB-deficient mice. Glia 22(4):390–400

    Article  CAS  PubMed  Google Scholar 

  182. Bagheri M, Ghaneialvar H, Oshnokhah M, Salari S (2022) GFAP and neuron specific enolase (NSE) in the serum of suicide attempters. Med J Islam Repub Iran:36

  183. Gayger-Dias V, Vizuete AF, Rodrigues L, Wartchow KM, Bobermin L, Leite MC, Quincozes-Santos A, Kleindienst A et al (2023) How S100B crosses brain barriers and why it is considered a peripheral marker of brain injury. Exp Biol Med 248(22):2109–2119

    CAS  Google Scholar 

  184. Langeh U, Singh S (2021) Targeting S100B protein as a surrogate biomarker and its role in various neurological disorders. Curr Neuropharmacol 19(2):265–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Rajewska-Rager A, Dmitrzak-Weglarz M, Kapelski P, Lepczynska N, Pawlak J, Twarowska-Hauser J, Skibinska M (2021) Longitudinal assessment of S100B serum levels and clinical factors in youth patients with mood disorders. Sci Rep 11(1):11973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Michel M, Fiebich BL, Kuzior H, Meixensberger S, Berger B, Maier S, Nickel K, Runge K et al (2021) Increased GFAP concentrations in the cerebrospinal fluid of patients with unipolar depression. Transl Psychiatry 11(1):308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. O'Leary LA, Belliveau C, Davoli MA, Ma JC, Tanti A, Turecki G, Mechawar N (2021) Widespread decrease of cerebral vimentin-immunoreactive astrocytes in depressed suicides. Front Psychiatry 12:640963

    Article  PubMed  PubMed Central  Google Scholar 

  188. Wallensten J, Nager A, Åsberg M, Borg K, Beser A, Wilczek A, Mobarrez F (2021) Leakage of astrocyte-derived extracellular vesicles in stress-induced exhaustion disorder: a cross-sectional study. Sci Rep 11(1):2009

  189. Sx X, Xie X, Yao L, Wang W, Zhang H, Chen M, Sun S, Nie Z et al (2023) Human in vivo evidence of reduced astrocyte activation and neuroinflammation in patients with treatment-resistant depression following electroconvulsive therapy. Psychiatry Clin Neurosci 77(12):653–664

    Article  Google Scholar 

  190. Chu H, Huang C, Ding H, Dong J, Gao Z, Yang X, Tang Y, Dong Q (2016) Aquaporin-4 and cerebrovascular diseases. Int J Mol Sci 17(8):1249

    Article  PubMed  PubMed Central  Google Scholar 

  191. Xiao M, Hu G (2014) Involvement of aquaporin 4 in astrocyte function and neuropsychiatric disorders. CNS Neurosci Ther 20(5):385–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. O'Kane RL, Martınez-López I, DeJoseph MR, Vina JR, Hawkins RA (1999) Na+-dependent glutamate transporters (EAAT1, EAAT2, and EAAT3) of the blood-brain barrier: a mechanism for glutamate removal. J Biol Chem 274(45):31891–31895

    Article  CAS  PubMed  Google Scholar 

  193. Vazana U, Veksler R, Pell GS, Prager O, Fassler M, Chassidim Y, Roth Y, Shahar H et al (2016) Glutamate-mediated blood–brain barrier opening: implications for neuroprotection and drug delivery. J Neurosci 36(29):7727–7739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Leucht S, Corves C, Arbter D, Engel RR, Li C, Davis JM (2009) Second-generation versus first-generation antipsychotic drugs for schizophrenia: a meta-analysis. Lancet 373(9657):31–41

    Article  CAS  PubMed  Google Scholar 

  195. Pollak TA, Drndarski S, Stone JM, David AS, McGuire P, Abbott NJ (2018) The blood–brain barrier in psychosis. Lancet Psychiatry 5(1):79–92

    Article  PubMed  Google Scholar 

  196. Serna-Rodríguez MF, Bernal-Vega S, Camacho-Morales A, Pérez-Maya AA (2022) The role of damage associated molecular pattern molecules (DAMPs) and permeability of the blood-brain barrier in depression and neuroinflammation. J Neuroimmunol 371:577951

  197. Medina-Rodriguez EM, Beurel E (2022) Blood brain barrier and inflammation in depression. Neurobiol Dis 175:105926

    Article  PubMed  PubMed Central  Google Scholar 

  198. Greene C, Kealy J, Humphries M, Gong Y, Hou J, Hudson N, Cassidy L, Martiniano R et al (2018) Dose-dependent expression of claudin-5 is a modifying factor in schizophrenia. Mol Psychiatry 23(11):2156–2166

    Article  CAS  PubMed  Google Scholar 

  199. Marchi N, Angelov L, Masaryk T, Fazio V, Granata T, Hernandez N, Hallene K, Diglaw T et al (2007) Seizure-promoting effect of blood–brain barrier disruption. Epilepsia 48(4):732–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Dudek KA, Dion-Albert L, Lebel M, LeClair K, Labrecque S, Tuck E, Ferrer Perez C, Golden SA et al (2020) Molecular adaptations of the blood–brain barrier promote stress resilience vs. depression. Proc Natl Acad Sci 117(6):3326–3336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Zhang Y, Lu W, Wang Z, Zhang R, Xie Y, Guo S, Jiao L, Hong Y et al (2020) Reduced neuronal cAMP in the nucleus accumbens damages blood-brain barrier integrity and promotes stress vulnerability. Biol Psychiatry 87(6):526–537

    Article  CAS  PubMed  Google Scholar 

  202. Esposito P, Gheorghe D, Kandere K, Pang X, Connolly R, Jacobson S, Theoharides TC (2001) Acute stress increases permeability of the blood–brain-barrier through activation of brain mast cells. Brain Res 888(1):117–127

    Article  CAS  PubMed  Google Scholar 

  203. Lesniak A, Poznański P, Religa P, Nawrocka A, Bujalska-Zadrozny M, Sacharczuk M (2021) Loss of brain-derived neurotrophic factor (BDNF) resulting from congenital-or mild traumatic brain injury-induced blood–brain barrier disruption correlates with depressive-like behaviour. Neuroscience 458:1–10

    Article  CAS  PubMed  Google Scholar 

  204. Liu H, Luiten PG, Eisel UL, Dejongste MJ, Schoemaker RG (2013) Depression after myocardial infarction: TNF-α-induced alterations of the blood–brain barrier and its putative therapeutic implications. Neurosci Biobehav Rev 37(4):561–572

    Article  CAS  PubMed  Google Scholar 

  205. Müller N, Schwarz M (2007) The immune-mediated alteration of serotonin and glutamate: towards an integrated view of depression. Mol Psychiatry 12(11):988–1000

    Article  PubMed  Google Scholar 

  206. Lindqvist D, Hall S, Surova Y, Nielsen HM, Janelidze S, Brundin L, Hansson O (2013) Cerebrospinal fluid inflammatory markers in Parkinson’s disease–associations with depression, fatigue, and cognitive impairment. Brain Behav Immun 33:183–189

    Article  CAS  PubMed  Google Scholar 

  207. Kovacs D, Eszlari N, Petschner P, Pap D, Vas S, Kovacs P, Gonda X, Bagdy G et al (2016) Interleukin-6 promoter polymorphism interacts with pain and life stress influencing depression phenotypes. J Neural Transm 123(5):541–548

    Article  CAS  PubMed  Google Scholar 

  208. Cohen SS, Min M, Cummings EE, Chen X, Sadowska GB, Sharma S, Stonestreet BS (2013) Effects of interleukin-6 on the expression of tight junction proteins in isolated cerebral microvessels from yearling and adult sheep. Neuroimmunomodulation 20(5):264–273

    Article  CAS  PubMed  Google Scholar 

  209. Gal Z, Torok D, Gonda X, Eszlari N, Anderson IM, Deakin B et al (2023) Inflammation and blood-brain barrier in depression: interaction of CLDN5 and IL6 gene variants in stress-induced depression. Int J Neuropsychopharmacol 26(3):189–197

  210. Pashaki MS, Mezel JA, Mokhtari Z, Gheshlagh RG, Hesabi PS, Nematifard T, Khaki S (2019) The prevalence of comorbid depression in patients with diabetes: a meta-analysis of observational studies. Diabetes Metab Syndr Clin Res Rev 13(6):3113–3119

    Article  Google Scholar 

  211. Matcham F, Rayner L, Steer S, Hotopf M (2013) The prevalence of depression in rheumatoid arthritis: a systematic review and meta-analysis. Rheumatology 52(12):2136–2148

    Article  PubMed  PubMed Central  Google Scholar 

  212. Martin-Subero M, Anderson G, Kanchanatawan B, Berk M, Maes M (2016) Comorbidity between depression and inflammatory bowel disease explained by immune-inflammatory, oxidative, and nitrosative stress; tryptophan catabolite; and gut–brain pathways. CNS Spectr 21(2):184–198

    Article  PubMed  Google Scholar 

  213. Jiang M, Qin P, Yang X (2014) Comorbidity between depression and asthma via immune-inflammatory pathways: a meta-analysis. J Affect Disord 166:22–29

    Article  PubMed  Google Scholar 

  214. Kim J-S, Ryu S-Y, Yun I, Kim W-J, Lee K-S, Park J-W, Kim Y-I (2006) 1α, 25-Dihydroxyvitamin D3 protects dopaminergic neurons in rodent models of Parkinson’s disease through inhibition of microglial activation. J Clin Neurol 2(4):252–257

    Article  PubMed  PubMed Central  Google Scholar 

  215. Crotti A, Glass CK (2015) The choreography of neuroinflammation in Huntington’s disease. Trends Immunol 36(6):364–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Calsolaro V, Edison P (2016) Neuroinflammation in Alzheimer’s disease: current evidence and future directions. Alzheimers Dement 12(6):719–732

    Article  PubMed  Google Scholar 

  217. Vidale S, Consoli A, Arnaboldi M, Consoli D (2017) Postischemic inflammation in acute stroke. J Clin Neurol 13(1):1–9

    Article  PubMed  Google Scholar 

  218. Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, Lanctôt KL (2010) A meta-analysis of cytokines in major depression. Biol Psychiatry 67(5):446–457

    Article  CAS  PubMed  Google Scholar 

  219. Pasco JA, Nicholson GC, Williams LJ, Jacka FN, Henry MJ, Kotowicz MA, Schneider HG, Leonard BE et al (2010) Association of high-sensitivity C-reactive protein with de novo major depression. Br J Psychiatry 197(5):372–377

    Article  PubMed  Google Scholar 

  220. Miller AH, Raison CL (2016) The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol 16(1):22–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Brunoni AR, Supasitthumrong T, Teixeira AL, Vieira EL, Gattaz WF, Benseñor IM, Lotufo PA, Lafer B et al (2020) Differences in the immune-inflammatory profiles of unipolar and bipolar depression. J Affect Disord 262:8–15

    Article  CAS  PubMed  Google Scholar 

  222. Beurel E, Toups M, Nemeroff CB (2020) The bidirectional relationship of depression and inflammation: double trouble. Neuron 107(2):234–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Howren MB, Lamkin DM, Suls J (2009) Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosom Med 71(2):171–186

    Article  CAS  PubMed  Google Scholar 

  224. Maes M, Bosmans E, De Jongh R, Kenis G, Vandoolaeghe E, Neels H (1997) Increased serum IL-6 and IL-1 receptor antagonist concentrations in major depression and treatment resistant depression. Cytokine 9(11):853–858

    Article  CAS  PubMed  Google Scholar 

  225. Haapakoski R, Mathieu J, Ebmeier KP, Alenius H, Kivimäki M (2015) Cumulative meta-analysis of interleukins 6 and 1β, tumour necrosis factor α and C-reactive protein in patients with major depressive disorder. Brain Behav Immun 49:206–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Bonaccorso S, Puzella A, Marino V, Pasquini M, Biondi M, Artini M, Almerighi C, Levrero M et al (2001) Immunotherapy with interferon-alpha in patients affected by chronic hepatitis C induces an intercorrelated stimulation of the cytokine network and an increase in depressive and anxiety symptoms. Psychiatry Res 105(1-2):45–55

    Article  CAS  PubMed  Google Scholar 

  227. Meyers CA (1999) Mood and cognitive disorders in cancer patients receiving cytokine therapy. In: Cytokines, stress, and depression, pp 75–81

  228. Kim Y-K, Won E (2017) The influence of stress on neuroinflammation and alterations in brain structure and function in major depressive disorder. Behav Brain Res 329:6–11

    Article  CAS  PubMed  Google Scholar 

  229. Schlaaff K, Dobrowolny H, Frodl T, Mawrin C, Gos T, Steiner J, Bogerts B (2020) Increased densities of T and B lymphocytes indicate neuroinflammation in subgroups of schizophrenia and mood disorder patients. Brain Behav Immun 88:497–506

    Article  CAS  PubMed  Google Scholar 

  230. Enache D, Pariante CM, Mondelli V (2019) Markers of central inflammation in major depressive disorder: a systematic review and meta-analysis of studies examining cerebrospinal fluid, positron emission tomography and post-mortem brain tissue. Brain Behav Immun 81:24–40

    Article  PubMed  Google Scholar 

  231. Sheikh MA, O’Connell KS, Lekva T, Szabo A, Akkouh IA, Osete JR, Agartz I, Engh JA et al (2023) Systemic cell adhesion molecules in severe mental illness: potential role of intercellular CAM-1 in linking peripheral and neuroinflammation. Biol Psychiatry 93(2):187–196

    Article  CAS  PubMed  Google Scholar 

  232. Lindqvist D, Janelidze S, Hagell P, Erhardt S, Samuelsson M, Minthon L, Hansson O, Björkqvist M et al (2009) Interleukin-6 is elevated in the cerebrospinal fluid of suicide attempters and related to symptom severity. Biol Psychiatry 66(3):287–292

    Article  CAS  PubMed  Google Scholar 

  233. Schiweck C, Valles-Colomer M, Arolt V, Müller N, Raes J, Wijkhuijs A, Claes S, Drexhage H et al (2020) Depression and suicidality: a link to premature T helper cell aging and increased Th17 cells. Brain Behav Immun 87:603–609

    Article  CAS  PubMed  Google Scholar 

  234. Toenders YJ, Laskaris L, Davey CG, Berk M, Milaneschi Y, Lamers F, Penninx BW, Schmaal L (2022) Inflammation and depression in young people: a systematic review and proposed inflammatory pathways. Mol Psychiatry 27(1):315–327

    Article  CAS  PubMed  Google Scholar 

  235. Peng Z, Peng S, Lin K, Zhao B, Wei L, Tuo Q, Liao D, Yuan T et al (2022) Chronic stress-induced depression requires the recruitment of peripheral Th17 cells into the brain. J Neuroinflammation 19(1):1–14

    Article  Google Scholar 

  236. Kuwabara T, Ishikawa F, Kondo M, Kakiuchi T (2017) The role of IL-17 and related cytokines in inflammatory autoimmune diseases. Mediators of inflammation, 2017

  237. Althubaity N, Schubert J, Martins D, Yousaf T, Nettis MA, Mondelli V, Pariante C, Harrison NA et al (2022) Choroid plexus enlargement is associated with neuroinflammation and reduction of blood brain barrier permeability in depression. NeuroImage Clin 33:102926

    Article  PubMed  Google Scholar 

  238. Maciak K, Dziedzic A, Saluk J (2023) Possible role of the NLRP3 inflammasome and the gut–brain axis in multiple sclerosis-related depression. FASEB J 37(1):e22687

    Article  CAS  PubMed  Google Scholar 

  239. Chen L, Qing W, Yi Z, Lin G, Peng Q, Zhou F (2021) NU9056, a KAT 5 inhibitor, treatment alleviates brain dysfunction by inhibiting NLRP3 inflammasome activation, affecting gut microbiota, and derived metabolites in LPS-treated mice. Front Nutr 8:701760

    Article  PubMed  PubMed Central  Google Scholar 

  240. Varatharaj A, Galea I (2017) The blood-brain barrier in systemic inflammation. Brain Behav Immun 60:1–12

    Article  CAS  PubMed  Google Scholar 

  241. Weber MD, Godbout JP, Sheridan JF (2017) Repeated social defeat, neuroinflammation, and behavior: monocytes carry the signal. Neuropsychopharmacology 42(1):46–61

    Article  PubMed  Google Scholar 

  242. Powell ND, Sloan EK, Bailey MT, Arevalo JM, Miller GE, Chen E, Kobor MS, Reader BF et al (2013) Social stress up-regulates inflammatory gene expression in the leukocyte transcriptome via β-adrenergic induction of myelopoiesis. Proc Natl Acad Sci 110(41):16574–16579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Han K-M, Ham B-J (2021) How inflammation affects the brain in depression: a review of functional and structural MRI studies. J Clin Neurol (Seoul, Korea) 17(4):503

    Article  Google Scholar 

  244. Hartz AM, Bauer B, Fricker G, Miller DS (2006) Rapid modulation of P-glycoprotein-mediated transport at the blood-brain barrier by tumor necrosis factor-α and lipopolysaccharide. Mol Pharmacol 69(2):462–470

    Article  CAS  PubMed  Google Scholar 

  245. Urayama A, Grubb JH, Sly WS, Banks WA (2016) Pharmacologic manipulation of lysosomal enzyme transport across the blood–brain barrier. J Cereb Blood Flow Metab 36(3):476–486

    Article  CAS  PubMed  Google Scholar 

  246. Vallières L, Rivest S (1997) Regulation of the genes encoding interleukin-6, its receptor, and gp130 in the rat brain in response to the immune activator lipopolysaccharide and the proinflammatory cytokine interleukin-1β. J Neurochem 69(4):1668–1683

    Article  PubMed  Google Scholar 

  247. Chandra S, Alam MT, Dey J, Sasidharan BCP, Ray U, Srivastava AK, Gandhi S, Tripathi PP (2020) Healthy gut, healthy brain: the gut microbiome in neurodegenerative disorders. Curr Top Med Chem 20(13):1142–1153

    Article  CAS  PubMed  Google Scholar 

  248. Cryan JF, O'Riordan KJ, Cowan CS, Sandhu KV, Bastiaanssen TF, Boehme M et al (2019) The microbiota-gut-brain axis. Physiol Rev

  249. Makris AP, Karianaki M, Tsamis KI, Paschou SA (2021) The role of the gut-brain axis in depression: endocrine, neural, and immune pathways. Hormones 20:1–12

    Article  PubMed  Google Scholar 

  250. Tran SM-S, Mohajeri MH (2021) The role of gut bacterial metabolites in brain development, aging and disease. Nutrients 13(3):732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Madison A, Kiecolt-Glaser JK (2019) Stress, depression, diet, and the gut microbiota: human–bacteria interactions at the core of psychoneuroimmunology and nutrition. Curr Opin Behav Sci 28:105–110

    Article  PubMed  PubMed Central  Google Scholar 

  252. Modi SR, Collins JJ, Relman DA (2014) Antibiotics and the gut microbiota. J Clin Invest 124(10):4212–4218

    Article  PubMed  PubMed Central  Google Scholar 

  253. Sangal M (2022) The gut-brain Axis: the effect of dysbiosis on mood disorders like anxiety and depression. J High Sch Sci 6(4)

  254. Li T, Tian D, Lu M, Wang B, Li J, Xu B, Chen H, Wu S (2022) Gut microbiota dysbiosis induced by polychlorinated biphenyl 126 contributes to increased brain proinflammatory cytokines: landscapes from the gut-brain axis and fecal microbiota transplantation. Ecotoxicol Environ Saf 241:113726

    Article  CAS  PubMed  Google Scholar 

  255. Siopi E, Galerne M, Rivagorda M, Saha S, Moigneu C, Oury F, Lledo PM (2022) Gut microbial dysbiosis requires vagus nerve integrity to promote depression

  256. Chevalier G, Siopi E, Guenin-Macé L, Pascal M, Laval T, Rifflet A, Boneca IG, Demangel C et al (2020) Effect of gut microbiota on depressive-like behaviors in mice is mediated by the endocannabinoid system. Nat Commun 11(1):6363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Jiang H, Ling Z, Zhang Y, Mao H, Ma Z, Yin Y, Wang W, Tang W et al (2015) Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun 48:186–194

    Article  PubMed  Google Scholar 

  258. Zheng P, Zeng B, Zhou C, Liu M, Fang Z, Xu X, Zeng L, Chen J et al (2016) Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol Psychiatry 21(6):786–796

    Article  CAS  PubMed  Google Scholar 

  259. Greene C, Hanley N, Campbell M (2020) Blood-brain barrier associated tight junction disruption is a hallmark feature of major psychiatric disorders. Transl Psychiatry 10(1):373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Geng S, Yang L, Cheng F, Zhang Z, Li J, Liu W, Li Y, Chen Y et al (2020) Gut microbiota are associated with psychological stress-induced defections in intestinal and blood–brain barriers. Front Microbiol 10:3067

    Article  PubMed  PubMed Central  Google Scholar 

  261. Xiao Q, Shu R, Wu C, Tong Y, Xiong Z, Zhou J, Yu C, Xie X et al (2020) Crocin-I alleviates the depression-like behaviors probably via modulating “microbiota-gut-brain” axis in mice exposed to chronic restraint stress. J Affect Disord 276:476–486

    Article  CAS  PubMed  Google Scholar 

  262. Ohlsson L, Gustafsson A, Lavant E, Suneson K, Brundin L, Westrin Å, Ljunggren L, Lindqvist D (2019) Leaky gut biomarkers in depression and suicidal behavior. Acta Psychiatr Scand 139(2):185–193

    Article  CAS  PubMed  Google Scholar 

  263. Asbjornsdottir B, Snorradottir H, Andresdottir E, Fasano A, Lauth B, Gudmundsson LS, Gottfredsson M, Halldorsson TI et al (2020) Zonulin-dependent intestinal permeability in children diagnosed with mental disorders: a systematic review and meta-analysis. Nutrients 12(7):1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Maget A, Dalkner N, Hamm C, Bengesser S, Fellendorf F, Platzer M, Queissner R, Birner A et al (2021) Sex differences in zonulin in affective disorders and associations with current mood symptoms. J Affect Disord 294:441–446

    Article  CAS  PubMed  Google Scholar 

  265. Chen Y, Meng P, Cheng S, Jia Y, Wen Y, Yang X, Yao Y, Pan C et al (2021) Assessing the effect of interaction between C-reactive protein and gut microbiome on the risks of anxiety and depression. Mol Brain 14(1):1–8

    Article  Google Scholar 

  266. Varanoske AN, McClung HL, Sepowitz JJ, Halagarda CJ, Farina EK, Berryman CE, Lieberman HR, McClung JP et al (2022) Stress and the gut-brain axis: cognitive performance, mood state, and biomarkers of blood-brain barrier and intestinal permeability following severe physical and psychological stress. Brain Behav Immun 101:383–393

    Article  CAS  PubMed  Google Scholar 

  267. Al-Ayadhi L, Zayed N, Bhat RS, Moubayed NM, Al-Muammar MN, El-Ansary A (2021) The use of biomarkers associated with leaky gut as a diagnostic tool for early intervention in autism spectrum disorder: a systematic review. Gut Pathog 13:1–16

    Article  Google Scholar 

  268. Harry GJ (2013) Microglia during development and aging. Pharmacol Ther 139(3):313–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Takiishi T, Fenero CIM, Câmara NOS (2017) Intestinal barrier and gut microbiota: shaping our immune responses throughout life. Tissue Barriers 5(4):e1373208

    Article  PubMed  PubMed Central  Google Scholar 

  270. Ma TY, Nighot P, Al-Sadi R (2018) Tight junctions and the intestinal barrier. In: Physiology of the gastrointestinal tract. Elsevier, pp. 587–639

    Chapter  Google Scholar 

  271. Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Tóth M, Korecka A, Bakocevic N et al (2014) The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med 6(263):263ra158

    Article  PubMed  PubMed Central  Google Scholar 

  272. Leclercq S, Mian FM, Stanisz AM, Bindels LB, Cambier E, Ben-Amram H, Koren O, Forsythe P et al (2017) Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cytokines and behavior. Nat Commun 8(1):15062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Obrenovich ME (2018) Leaky gut, leaky brain? Microorganisms 6(4):107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Logsdon AF, Erickson MA, Rhea EM, Salameh TS, Banks WA (2018) Gut reactions: how the blood–brain barrier connects the microbiome and the brain. Exp Biol Med 243(2):159–165

    Article  CAS  Google Scholar 

  275. Marchi N, Rasmussen P, Kapural M, Fazio V, Kight K, Mayberg MR, Kanner A, Ayumar B et al (2003) Peripheral markers of brain damage and blood-brain barrier dysfunction. Restor Neurol Neurosci 21(3-4):109–121

    CAS  PubMed  PubMed Central  Google Scholar 

  276. Shalev H, Serlin Y, Friedman A (2009) Breaching the blood-brain barrier as a gate to psychiatric disorder. In: Cardiovascular psychiatry and neurology, 2009

  277. Gudmundsson P, Skoog I, Waern M, Blennow K, Pálsson S, Rosengren L, Gustafson D (2007) The relationship between cerebrospinal fluid biomarkers and depression in elderly women. Am J Geriatr Psychiatry 15(10):832–838

    Article  PubMed  Google Scholar 

  278. Bechter K, Reiber H, Herzog S, Fuchs D, Tumani H, Maxeiner H (2010) Cerebrospinal fluid analysis in affective and schizophrenic spectrum disorders: identification of subgroups with immune responses and blood–CSF barrier dysfunction. J Psychiatr Res 44(5):321–330

    Article  CAS  PubMed  Google Scholar 

  279. Niklasson F, Agren H (1984) Brain energy metabolism and blood-brain barrier permeability in depressive patients: analyses of creatine, creatinine, urate, and albumin in CSF and blood. Biol Psychiatry 19(8):1183–1206

  280. Sen J, Belli A (2007) S100B in neuropathologic states: the CRP of the brain? J Neurosci Res 85(7):1373–1380

    Article  CAS  PubMed  Google Scholar 

  281. Derwall M, Stoppe C, Brücken D, Rossaint R, Fries M (2009) Changes in S-100 protein serum levels in survivors of out-of-hospital cardiac arrest treated with mild therapeutic hypothermia: a prospective, observational study. Crit Care 13(2):1–7

    Article  Google Scholar 

  282. Loftis JM, Valerio J, Taylor J, Huang E, Hudson R, Taylor-Young P, Chang M, Ho SB et al (2018) S100B and inflammatory cytokine levels in blood as potential markers of blood–brain barrier damage and psychiatric impairment in comorbid hepatitis C viral infection and alcohol use disorder. Alcohol Clin Exp Res 42(8):1466–1475

    Article  CAS  Google Scholar 

  283. Luo K-R, Hong C-J, Liou Y-J, Hou S-J, Huang Y-H, Tsai S-J (2010) Differential regulation of neurotrophin S100B and BDNF in two rat models of depression. Prog Neuro-Psychopharmacol Biol Psychiatry 34(8):1433–1439

    Article  CAS  Google Scholar 

  284. Stroth N, Svenningsson P (2015) S100B interacts with the serotonin 5-HT7 receptor to regulate a depressive-like behavior. Eur Neuropsychopharmacol 25(12):2372–2380

    Article  CAS  PubMed  Google Scholar 

  285. Rong H, Wang G, Liu T, Wang H, Wan Q, Weng S (2010) Chronic mild stress induces fluoxetine-reversible decreases in hippocampal and cerebrospinal fluid levels of the neurotrophic factor S100B and its specific receptor. Int J Mol Sci 11(12):5310–5322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Rothermundt M, Arolt V, Wiesmann M, Missler U, Peters M, Rudolf S, Kirchner H (2001) S-100B is increased in melancholic but not in non-melancholic major depression. J Affect Disord 66(1):89–93

    Article  CAS  PubMed  Google Scholar 

  287. Schroeter ML, Abdul-Khaliq H, Krebs M, Diefenbacher A, Blasig IE (2008) Serum markers support disease-specific glial pathology in major depression. J Affect Disord 111(2-3):271–280

    Article  CAS  PubMed  Google Scholar 

  288. Rothermundt M, Missler U, Arolt V, Peters M, Leadbeater J, Wiesmann M, Rudolf S, Wandinger K et al (2001) Increased S100B blood levels in unmedicated and treated schizophrenic patients are correlated with negative symptomatology. Mol Psychiatry 6(4):445–449

    Article  CAS  PubMed  Google Scholar 

  289. Yang K, Xie G-R, Hu Y-Q, Mao F-Q, Su L-Y (2008) The effects of gender and numbers of depressive episodes on serum S100B levels in patients with major depression. J Neural Transm 115(12):1687–1694

    Article  PubMed  Google Scholar 

  290. Schroeter ML, Steiner J, Mueller K (2011) Glial pathology is modified by age in mood disorders—a systematic meta-analysis of serum S100B in vivo studies. J Affect Disord 134(1-3):32–38

    Article  PubMed  Google Scholar 

  291. Vijayadasan J, Raghunathan D, Rajagopal S, Soangra R (2021) Assessment of major depressive disorders through neuroimaging studies and their treatment methods. Int J Biol Biomed Eng 15:18–28

    Article  Google Scholar 

  292. Avivi E, Tomkins O, Korn A, Pavlovsky L, Shelef I, Friedman A (2004) 61. Persistent blood-brain barrier disruption in humans: a window for neurodegenerative diseases. Cholinergic Mechanisms:423

  293. Volkow ND, Rosen B, Farde L (1997) Imaging the living human brain: magnetic resonance imaging and positron emission tomography. Proc Natl Acad Sci 94(7):2787–2788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Deodhare S, O’Connor P, Ghazarian D, Bilbao JM (1996) Paraneoplastic limbic encephalitis in Hodgkin’s disease. Can J Neurol Sci 23(2):138–140

    Article  CAS  PubMed  Google Scholar 

  295. Montagne A, Barnes SR, Sweeney MD, Halliday MR, Sagare AP, Zhao Z, Toga AW, Jacobs RE et al (2015) Blood-brain barrier breakdown in the aging human hippocampus. Neuron 85(2):296–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Kamintsky L, Cairns KA, Veksler R, Bowen C, Beyea SD, Friedman A, Calkin C (2020) Blood-brain barrier imaging as a potential biomarker for bipolar disorder progression. NeuroImage Clin 26:102049

    Article  PubMed  Google Scholar 

  297. Turkheimer FE, Althubaity N, Schubert J, Nettis MA, Cousins O, Dima D, Mondelli V, Bullmore ET et al (2021) Increased serum peripheral C-reactive protein is associated with reduced brain barriers permeability of TSPO radioligands in healthy volunteers and depressed patients: implications for inflammation and depression. Brain Behav Immun 91:487–497

    Article  CAS  PubMed  Google Scholar 

  298. Mondelli V, Pariante CM (2021) What can neuroimmunology teach us about the symptoms of long-COVID? Oxford Open Immunol 2(1):iqab004

    Article  Google Scholar 

  299. Bettcher BM, Tansey MG, Dorothée G, Heneka MT (2021) Peripheral and central immune system crosstalk in Alzheimer disease—a research prospectus. Nat Rev Neurol 17(11):689–701

    Article  PubMed  PubMed Central  Google Scholar 

  300. Lim S-W, Shiue Y-L, Liao J-C, Wee H-Y, Wang C-C, Chio C-C, Chang C-H, Hu C-Y et al (2017) Simvastatin therapy in the acute stage of traumatic brain injury attenuates brain trauma-induced depression-like behavior in rats by reducing neuroinflammation in the hippocampus. Neurocrit Care 26:122–132

    Article  CAS  PubMed  Google Scholar 

  301. Cash A, Theus MH (2020) Mechanisms of blood–brain barrier dysfunction in traumatic brain injury. Int J Mol Sci 21(9):3344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Hay JR, Johnson VE, Young AM, Smith DH, Stewart W (2015) Blood-brain barrier disruption is an early event that may persist for many years after traumatic brain injury in humans. J Neuropathol Exp Neurol 74(12):1147–1157

    CAS  PubMed  Google Scholar 

  303. Michinaga S, Sonoda K, Inazuki N, Ezaki M, Awane H, Shimizu K, Hishinuma S, Mizuguchi H (2022) Selective histamine H2 receptor agonists alleviate blood-brain barrier disruption by promoting the expression of vascular protective factors following traumatic brain injury in mice. J Pharmacol Sci 150(3):135–145

    Article  CAS  PubMed  Google Scholar 

  304. Li Y, Cao T, Ritzel RM, He J, Faden AI, Wu J (2020) Dementia, depression, and associated brain inflammatory mechanisms after spinal cord injury. Cells 9(6):1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Rodocker HI, Bordbar A, Larson MJ, Biltz RG, Wangler L, Fadda P et al (2022) Breaking mental barriers promotes recovery after spinal cord injury. Front Mol Neurosci 15:868563

  306. Bucciarelli V, Caterino AL, Bianco F, Caputi CG, Salerni S, Sciomer S, Maffei S, Gallina S (2020) Depression and cardiovascular disease: the deep blue sea of women’s heart. Trends Cardiovas Med 30(3):170–176

    Article  Google Scholar 

  307. Wijeratne T, Sales C (2021) Understanding why post-stroke depression may be the norm rather than the exception: the anatomical and neuroinflammatory correlates of post-stroke depression. J Clin Med 10(8):1674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Cai W, Ma W, Wang GT, Li YJ, Shen WD (2019) Antidepressant, anti-inflammatory, and antioxidant effects of electroacupuncture through sonic hedgehog–signaling pathway in a rat model of poststroke depression. Neuropsychiatr Dis Treat:1403–1411

  309. Lee S, Kang B-M, Kim JH, Min J, Kim HS, Ryu H, Park H, Bae S et al (2018) Real-time in vivo two-photon imaging study reveals decreased cerebro-vascular volume and increased blood-brain barrier permeability in chronically stressed mice. Sci Rep 8(1):13064

    Article  PubMed  PubMed Central  Google Scholar 

  310. Serlin Y, Levy J, Shalev H (2011) Vascular pathology and blood-brain barrier disruption in cognitive and psychiatric complications of type 2 diabetes mellitus. Cardiovasc Psychiatry Neurol 2011

  311. Calkin C, McClelland C, Cairns K, Kamintsky L, Friedman A (2021) Insulin resistance and blood-brain barrier dysfunction underlie neuroprogression in bipolar disorder. Front Psychiatry 12:636174

    Article  PubMed  PubMed Central  Google Scholar 

  312. Liang W, dong Ye D (2019) The potential of adipokines as biomarkers and therapeutic agents for vascular complications in type 2 diabetes mellitus. Cytokine Growth Factor Rev 48:32–39

    Article  CAS  PubMed  Google Scholar 

  313. Mehina EM, Taylor S, Boghozian R, White E, Choi SE, Cheema MS, Korbelin J, Brown CE (2021) Invasion of phagocytic galectin 3 expressing macrophages in the diabetic brain disrupts vascular repair. Science. Advances 7(34):eabg2712

    CAS  Google Scholar 

  314. Aggarwal A, Khera A, Singh I, Sandhir R (2015) S-nitrosoglutathione prevents blood–brain barrier disruption associated with increased matrix metalloproteinase-9 activity in experimental diabetes. J Neurochem 132(5):595–608

    Article  CAS  PubMed  Google Scholar 

  315. Tsyglakova M, McDaniel D, Hodes GE (2019) Immune mechanisms of stress susceptibility and resilience: lessons from animal models. Front Neuroendocrinol 54:100771

    Article  CAS  PubMed  Google Scholar 

  316. Welcome MO (2020) Cellular mechanisms and molecular signaling pathways in stress-induced anxiety, depression, and blood–brain barrier inflammation and leakage. Inflammopharmacology 28:643–665

    Article  PubMed  Google Scholar 

  317. Breidenbach C, Heidkamp P, Hiltrop K, Pfaff H, Enders A, Ernstmann N, Kowalski C (2022) Prevalence and determinants of anxiety and depression in long-term breast cancer survivors. BMC Psychiatry 22(1):101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Hunt GE, Malhi GS, Lai HMX, Cleary M (2020) Prevalence of comorbid substance use in major depressive disorder in community and clinical settings, 1990–2019: systematic review and meta-analysis. J Affect Disord 266:288–304

    Article  PubMed  Google Scholar 

  319. Kousik SM, Napier TC, Carvey PM (2012) The effects of psychostimulant drugs on blood brain barrier function and neuroinflammation. Front Pharmacol 3:121

    Article  PubMed  PubMed Central  Google Scholar 

  320. Pimentel E, Sivalingam K, Doke M, Samikkannu T (2020) Effects of drugs of abuse on the blood-brain barrier: a brief overview. Front Neurosci 14:513

    Article  PubMed  PubMed Central  Google Scholar 

  321. Ni K, Zhu J, Xu X, Liu Y, Yang S, Huang Y, Xu R, Jiang L et al (2022) Hippocampal activated microglia may contribute to blood–brain barrier impairment and cognitive dysfunction in post-traumatic stress disorder-like rats. J Mol Neurosci 72(5):975–982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  322. Turner CA, Gula EL, Taylor LP, Watson SJ, Akil H (2008) Antidepressant-like effects of intracerebroventricular FGF2 in rats. Brain Res 1224:63–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Mosolov SN, Yaltonskaya PA (2022) Primary and secondary negative symptoms in schizophrenia. Front Psychiatry 12:766692

    Article  PubMed  PubMed Central  Google Scholar 

  324. Pong S, Karmacharya R, Sofman M, Bishop JR, Lizano P (2020) The role of brain microvascular endothelial cell and blood-brain barrier dysfunction in schizophrenia. Complex Psychiatry 6(1-2):30–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  325. Matsuno H, Tsuchimine S, O’Hashi K, Sakai K, Hattori K, Hidese S, Nakajima S, Chiba S et al (2022) Association between vascular endothelial growth factor-mediated blood–brain barrier dysfunction and stress-induced depression. Mol Psychiatry 27(9):3822–3832

    Article  CAS  PubMed  Google Scholar 

  326. Wohleb ES, Patterson JM, Sharma V, Quan N, Godbout JP, Sheridan JF (2014) Knockdown of interleukin-1 receptor type-1 on endothelial cells attenuated stress-induced neuroinflammation and prevented anxiety-like behavior. J Neurosci 34(7):2583–2591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Sander J, Moessner M, Bauer S (2021) Depression, anxiety and eating disorder-related impairment: moderators in female adolescents and young adults. Int J Environ Res Public Health 18(5):2779

    Article  PubMed  PubMed Central  Google Scholar 

  328. Zeiler M, Waldherr K, Philipp J, Nitsch M, Dür W, Karwautz A, Wagner G (2016) Prevalence of eating disorder risk and associations with health-related quality of life: results from a large school-based population screening. Eur Eat Disord Rev 24(1):9–18

    Article  PubMed  Google Scholar 

  329. Andjelkovic AV, Situ M, Citalan-Madrid AF, Stamatovic SM, Xiang J, Keep RF (2023) Blood-brain barrier dysfunction in normal aging and neurodegeneration: mechanisms, impact, and treatments. Stroke 54(3):661–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Graves SI, Baker DJ (2020) Implicating endothelial cell senescence to dysfunction in the ageing and diseased brain. Basic Clin Pharmacol Toxicol 127(2):102–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Shao A, Lin D, Wang L, Tu S, Lenahan C, Zhang J (2020) Oxidative stress at the crossroads of aging, stroke and depression. Aging Dis 11(6):1537

    Article  PubMed  PubMed Central  Google Scholar 

  332. Gold SM, Köhler-Forsberg O, Moss-Morris R, Mehnert A, Miranda JJ, Bullinger M, Steptoe A, Whooley MA et al (2020) Comorbid depression in medical diseases. Nat Rev Dis Prim 6(1):69

    Article  PubMed  Google Scholar 

  333. Sbolli M, Fiuzat M, Cani D, O'Connor CM (2020) Depression and heart failure: the lonely comorbidity. Eur J Heart Fail 22(11):2007–2017

    Article  PubMed  Google Scholar 

  334. Zambrano J, Celano CM, Januzzi JL, Massey CN, Chung WJ, Millstein RA, Huffman JC (2020) Psychiatric and psychological interventions for depression in patients with heart disease: a scoping review. J Am Heart Assoc 9(22):e018686

    Article  PubMed  PubMed Central  Google Scholar 

  335. Bahall M, Legall G, Khan K (2020) Quality of life among patients with cardiac disease: the impact of comorbid depression. Health Qual Life Outcomes 18:1–10

    Article  Google Scholar 

  336. van der Feltz-Cornelis C, Allen SF, Holt RI, Roberts R, Nouwen A, Sartorius N (2021) Treatment for comorbid depressive disorder or subthreshold depression in diabetes mellitus: systematic review and meta-analysis. Brain Behav 11(2):e01981

    Article  PubMed  Google Scholar 

  337. Khaledi M, Haghighatdoost F, Feizi A, Aminorroaya A (2019) The prevalence of comorbid depression in patients with type 2 diabetes: an updated systematic review and meta-analysis on huge number of observational studies. Acta Diabetol 56:631–650

    Article  PubMed  Google Scholar 

  338. Arteaga-Henríquez G, Simon MS, Burger B, Weidinger E, Wijkhuijs A, Arolt V, Birkenhager TK, Musil R et al (2019) Low-grade inflammation as a predictor of antidepressant and anti-inflammatory therapy response in MDD patients: a systematic review of the literature in combination with an analysis of experimental data collected in the EU-MOODINFLAME consortium. Front Psychiatry 10:458

    Article  PubMed  PubMed Central  Google Scholar 

  339. Farooqi A, Gillies C, Sathanapally H, Abner S, Seidu S, Davies MJ, Polonsky WH, Khunti K (2022) A systematic review and meta-analysis to compare the prevalence of depression between people with and without type 1 and type 2 diabetes. Prim Care Diabetes 16(1):1–10

    Article  PubMed  Google Scholar 

  340. Fraenkel L, Bathon JM, England BR, St. Clair EW, Arayssi T, Carandang K, Deane KD, Genovese M et al (2021) 2021 American College of Rheumatology guideline for the treatment of rheumatoid arthritis. Arthritis Rheumatol 73(7):1108–1123

    Article  PubMed  Google Scholar 

  341. Simpson CA, Mu A, Haslam N, Schwartz OS, Simmons JG (2020) Feeling down? A systematic review of the gut microbiota in anxiety/depression and irritable bowel syndrome. J Affect Disord 266:429–446

    Article  CAS  PubMed  Google Scholar 

  342. Gao X, Tang Y, Lei N, Luo Y, Chen P, Liang C, Duan S, Zhang Y (2021) Symptoms of anxiety/depression is associated with more aggressive inflammatory bowel disease. Sci Rep 11(1):1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  343. Hitchon CA, Zhang L, Peschken CA, Lix LM, Graff LA, Fisk JD, Patten SB, Bolton J et al (2020) Validity and reliability of screening measures for depression and anxiety disorders in rheumatoid arthritis. Arthritis Care Res 72(8):1130–1139

    Article  Google Scholar 

  344. Tay J, Morris RG, Markus HS (2021) Apathy after stroke: diagnosis, mechanisms, consequences, and treatment. Int J Stroke 16(5):510–518

    Article  PubMed  PubMed Central  Google Scholar 

  345. Parkinson B, Lawrence M, McElhinney E, Booth J (2023) Online mindfulness with care partnerships experiencing anxiety and depression symptoms after stroke: mixed methods case study research. J Holist Nurs 41(2):185–199

  346. Mula M, Brodie MJ, de Toffol B, Guekht A, Hecimovic H, Kanemoto K, Kanner AM, Teixeira AL et al (2022) ILAE clinical practice recommendations for the medical treatment of depression in adults with epilepsy. Epilepsia 63(2):316–334

    Article  PubMed  Google Scholar 

  347. Gliwińska A, Czubilińska-Łada J, Więckiewicz G, Świętochowska E, Badeński A, Dworak M, Szczepańska M (2023) The role of brain-derived neurotrophic factor (BDNF) in diagnosis and treatment of epilepsy, depression, schizophrenia, anorexia nervosa and Alzheimer’s disease as highly drug-resistant diseases: a narrative review. Brain Sci 13(2):163

    Article  PubMed  PubMed Central  Google Scholar 

  348. Alajbegovic A, Djelilovic-Vranic J, Alajbegovic S, Nakicevic A, Todorovic L, Tiric-Campara M (2014) Post stroke depression. Med Arch 68(1):47

    Article  PubMed  PubMed Central  Google Scholar 

  349. Kanner AM (2003) Depression in epilepsy: prevalence, clinical semiology, pathogenic mechanisms, and treatment. Biol Psychiatry 54(3):388–398

    Article  PubMed  Google Scholar 

  350. Olashore AA, Paruk S, Ogunwale A, Ita M, Tomita A, Chiliza B (2023) The effectiveness of psychoeducation and problem-solving on depression and treatment adherence in adolescents living with HIV in Botswana: an exploratory clinical trial. Child Adolesc Psychiatry Ment Health 17(1):2

    Article  PubMed  PubMed Central  Google Scholar 

  351. Camara A, Sow M, Touré A, Sako F, Camara I, Soumaoro K, Delamou A, Doukouré M (2020) Anxiety and depression among HIV patients of the infectious disease department of Conakry University Hospital in 2018. Epidemiol Infect 148:e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  352. Nakimuli-Mpungu E, Musisi S, Smith CM, Von Isenburg M, Akimana B, Shakarishvili A, Nachega JB, Mills EJ et al (2021) Mental health interventions for persons living with HIV in low-and middle-income countries: a systematic review. J Int AIDS Soc 24:e25722

    Article  PubMed  PubMed Central  Google Scholar 

  353. Reis RK, Haas VJ, Santos CB, Teles SA, Galvão MTG, Gir E (2011) Symptoms of depression and quality of life of people living with HIV/AIDS. Rev Lat Am Enfermagem 19:874–881

    Article  PubMed  Google Scholar 

  354. Wang Y-H, Li J-Q, Shi J-F, Que J-Y, Liu J-J, Lappin JM, Leung J, Ravindran AV et al (2020) Depression and anxiety in relation to cancer incidence and mortality: a systematic review and meta-analysis of cohort studies. Mol Psychiatry 25(7):1487–1499

    Article  PubMed  Google Scholar 

  355. Fernández-Rodríguez C, González-Fernández S, Coto-Lesmes R, Pedrosa I (2021) Behavioral activation and acceptance and commitment therapy in the treatment of anxiety and depression in cancer survivors: a randomized clinical trial. Behav Modif 45(5):822–859

    Article  PubMed  Google Scholar 

  356. Ostuzzi G, Matcham F, Dauchy S, Barbui C, Hotopf M (2018) Antidepressants for the treatment of depression in people with cancer. Cochrane Database Syst Rev:4

  357. Naser AY, Hameed AN, Mustafa N, Alwafi H, Dahmash EZ, Alyami HS, Khalil H (2021) Depression and anxiety in patients with cancer: a cross-sectional study. Front Psychol 12:1067

    Article  Google Scholar 

  358. Dold M, Bartova L, Kautzky A, Porcelli S, Montgomery S, Zohar J, Mendlewicz J, Souery D et al (2019) Psychotic features in patients with major depressive disorder: a report from the European group for the study of resistant depression. J Clin Psychiatry 80(1):16309

    Article  Google Scholar 

  359. Busatto GF (2013) Structural and functional neuroimaging studies in major depressive disorder with psychotic features: a critical review. Schizophr Bull 39(4):776–786

    Article  PubMed  PubMed Central  Google Scholar 

  360. Nelson JC, Bickford D, Delucchi K, Fiedorowicz JG, Coryell WH (2018) Risk of psychosis in recurrent episodes of psychotic and nonpsychotic major depressive disorder: a systematic review and meta-analysis. Am J Psychiatry 175(9):897–904

    Article  PubMed  Google Scholar 

  361. Shen Y, Wei Y, Yang XN, Zhang G, Du X, Jia Q, Zhu X, Ma Y et al (2020) Psychotic symptoms in first-episode and drug naïve patients with major depressive disorder: prevalence and related clinical factors. Depress Anxiety 37(8):793–800

    Article  PubMed  Google Scholar 

  362. Yan L, Kang C, Wang X, Yang L, Zhao N, Zhang X (2022) Association of serum lipid levels with psychotic symptoms in young, first-episode and drug naïve outpatients with major depressive disorder: a large-scale cross-sectional study. Psychiatry Res 317:114864

    Article  CAS  PubMed  Google Scholar 

  363. Zhang L, Verwer RW, Zhao J, Huitinga I, Lucassen PJ, Swaab DF (2021) Changes in glial gene expression in the prefrontal cortex in relation to major depressive disorder, suicide and psychotic features. J Affect Disord 295:893–903

    Article  CAS  PubMed  Google Scholar 

  364. Dubovsky SL, Ghosh BM, Serotte JC, Cranwell V (2021) Psychotic depression: diagnosis, differential diagnosis, and treatment. Psychother Psychosom 90(3):160–177

    Article  PubMed  Google Scholar 

  365. Pereira VS, Hiroaki-Sato VA (2018) A brief history of antidepressant drug development: from tricyclics to beyond ketamine. Acta Neuropsychiatr 30(6):307–322

    Article  PubMed  Google Scholar 

  366. Chen Y, Kelton CM, Jing Y, Guo JJ, Li X, Patel NC (2008) Utilization, price, and spending trends for antidepressants in the US Medicaid Program. Res Soc Adm Pharm 4(3):244–257

    Article  Google Scholar 

  367. Elmarasi M, Fuehrlein B (2024) US Medicaid program: an analysis of the spending and utilization patterns for antidepressants from 2017 to 2021. Explor Res Clin Soc Pharm 13:100392

    PubMed  Google Scholar 

  368. Mao K, Wu Y, Chen J (2023) A systematic review on automated clinical depression diagnosis. npj Mental Health Res 2(1):20

    Article  Google Scholar 

  369. KV A, Madhana RM, Bais AK, Singh VB, Malik A, Sinha S, Lahkar M, Kumar P, Samudrala PK (2020) Cognitive improvement by vorinostat through modulation of endoplasmic reticulum stress in a corticosterone-induced chronic stress model in mice. ACS Chem Neurosci 11(17):2649–2657

    Article  CAS  Google Scholar 

  370. Lozano Montes L, Balakrishnan V, Gopalakrishnan S (2021) Effects of integrated amrita meditation technique on anxiety, depression, and plasma neurotransmitters on a healthy population: a randomized controlled trial followed by a case–control study. J Altern Complement Med 27(8):641–648

    Article  PubMed  Google Scholar 

  371. Cecchelli R, Berezowski V, Lundquist S, Culot M, Renftel M, Dehouck M-P, Fenart L (2007) Modelling of the blood–brain barrier in drug discovery and development. Nat Rev Drug Discov 6(8):650–661

    Article  CAS  PubMed  Google Scholar 

  372. Cheng Z, Zhang J, Liu H, Li Y, Zhao Y, Yang E (2010) CNS penetration for small molecule therapeutics do not increase in multiple sclerosis (MS) and Alzheimer’s disease (AD) related animal models despite reported blood–brain barrier disruption. Drug Metab Dispos 38(8):1355–1361

    Article  CAS  PubMed  Google Scholar 

  373. Li T, Zheng L-N, Han X-H (2020) Fenretinide attenuates lipopolysaccharide (LPS)-induced blood-brain barrier (BBB) and depressive-like behavior in mice by targeting Nrf-2 signaling. Biomed Pharmacother 125:109680

    Article  CAS  PubMed  Google Scholar 

  374. Li D, Wang Y, Jin X, Hu D, Xia C, Xu H, Hu J (2020) NK cell-derived exosomes carry miR-207 and alleviate depression-like symptoms in mice. J Neuroinflammation 17:1–19

    Article  Google Scholar 

  375. Vastegani SM, Hajipour S, Sarkaki A, Basir Z, Navabi SP, Farbood Y, Khoshnam SE (2022) Curcumin mitigates lipopolysaccharide-induced anxiety/depression-like behaviors, blood–brain barrier dysfunction and brain edema by decreasing cerebral oxidative stress in male rats. Neurosci Lett 782:136697

    Article  Google Scholar 

  376. Yassine HN, Feng Q, Chiang J, Petrosspour LM, Fonteh AN, Chui HC, Harrington MG (2016) ABCA1-mediated cholesterol efflux capacity to cerebrospinal fluid is reduced in patients with mild cognitive impairment and Alzheimer’s disease. J Am Heart Assoc 5(2):e002886

    Article  PubMed  PubMed Central  Google Scholar 

  377. Storck SE, Meister S, Nahrath J, Meißner JN, Schubert N, Di Spiezio A et al (2016) Endothelial-LRP1 clears major amounts of Aβ1–42 across the blood-brain barrier. J Clin Investig, Accept

  378. Schinkel AH (1999) P-Glycoprotein, a gatekeeper in the blood–brain barrier. Adv Drug Deliv Rev 36(2-3):179–194

    Article  CAS  PubMed  Google Scholar 

  379. de Klerk OL, Willemsen AT, Roosink M, Bartels AL, Hendrikse NH, Bosker FJ, den Boer JA (2009) Locally increased P-glycoprotein function in major depression: a PET study with [11C] verapamil as a probe for P-glycoprotein function in the blood–brain barrier. Int J Neuropsychopharmacol 12(7):895–904

    Article  PubMed  Google Scholar 

  380. De Klerk OL, Bosker FJ, Willemsen AT, Van Waarde A, Visser AK, de Jager T, Dagyte G, Den Boer JA et al (2010) Chronic stress and antidepressant treatment have opposite effects on P-glycoprotein at the blood—brain barrier: an experimental PET study in rats. J Psychopharmacol 24(8):1237–1242

    Article  PubMed  Google Scholar 

  381. Vazquez-Matias DA, de Vries EF, Dierckx RA, Doorduin J (2023) PET imaging of animal models with depressive-like phenotypes. Eur J Nucl Med Mol Imaging 50(6):1564–1584

  382. Brückl TM, Uhr M (2016) ABCB1 genotyping in the treatment of depression. Pharmacogenomics 17(18):2039–2069

    Article  PubMed  Google Scholar 

  383. Brzozowska NI, Smith KL, Zhou C, Waters PM, Cavalcante LM, Abelev SV, Kuligowski M, Clarke DJ et al (2017) Genetic deletion of P-glycoprotein alters stress responsivity and increases depression-like behavior, social withdrawal and microglial activation in the hippocampus of female mice. Brain Behav Immun 65:251–261

    Article  CAS  PubMed  Google Scholar 

  384. Khedr LH, Eladawy RM, Nassar NN, Saad MA (2023) Canagliflozin attenuates chronic unpredictable mild stress induced neuroinflammation via modulating AMPK/mTOR autophagic signaling. Neuropharmacology 223:109293

    Article  CAS  PubMed  Google Scholar 

  385. Yanagida K, Liu CH, Faraco G, Galvani S, Smith HK, Burg N, Anrather J, Sanchez T et al (2017) Size-selective opening of the blood–brain barrier by targeting endothelial sphingosine 1–phosphate receptor 1. Proc Natl Acad Sci 114(17):4531–4536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  386. Winkler MS, Nierhaus A, Holzmann M, Mudersbach E, Bauer A, Robbe L, Zahrte C, Geffken M (2015) Decreased serum concentrations of sphingosine-1-phosphate in sepsis. Crit Care 19(1):1–8

    Article  Google Scholar 

  387. Botelho MEM, Carlessi AS, Manosso LM, Borba LA, de Moura AB, Maciel LR et al (2021) Sex differences in the brain-blood barrier in rats exposed to early life stress and the treatment with antidepressants and Psychobiotic

  388. Ibrahim WW, Sayed RH, Kandil EA, Wadie W (2022) Niacin mitigates blood–brain barrier tight junctional proteins dysregulation and cerebral inflammation in ketamine rat model of psychosis: role of GPR109A receptor. Prog Neuro-Psychopharmacol Biol Psychiatry 119:110583

    Article  CAS  Google Scholar 

  389. Lopresti AL (2022) Potential role of curcumin for the treatment of major depressive disorder. CNS Drugs 36(2):123–141

  390. Nguyen HD, Kim M-S (2022) The protective effects of curcumin on depression: genes, transcription factors, and microRNAs involved. J Affect Disord 319:526–537

    Article  CAS  PubMed  Google Scholar 

  391. Zhang Y, Li L, Zhang J (2020) Curcumin in antidepressant treatments: an overview of potential mechanisms, pre-clinical/clinical trials and ongoing challenges. Basic Clin Pharmacol Toxicol 127(4):243–253

    Article  CAS  PubMed  Google Scholar 

  392. Yuan J, Liu W, Zhu H, Zhang X, Feng Y, Chen Y, Feng H, Lin J (2017) Curcumin attenuates blood-brain barrier disruption after subarachnoid hemorrhage in mice. J Surg Res 207:85–91

    Article  CAS  PubMed  Google Scholar 

  393. Wang Y, Luo J, Li S-Y (2019) Nano-curcumin simultaneously protects the blood–brain barrier and reduces M1 microglial activation during cerebral ischemia–reperfusion injury. ACS Appl Mater Interfaces 11(4):3763–3770

    Article  CAS  PubMed  Google Scholar 

  394. Wang Y-f, Gu Y-t, Qin G-h, Zhong L, Meng Y-n (2013) Curcumin ameliorates the permeability of the blood–brain barrier during hypoxia by upregulating heme oxygenase-1 expression in brain microvascular endothelial cells. J Mol Neurosci 51(2):344–351

    Article  CAS  PubMed  Google Scholar 

  395. Rubab S, Naeem K, Rana I, Khan N, Afridi M, Ullah I, Shah FA, Sarwar S et al (2021) Enhanced neuroprotective and antidepressant activity of curcumin-loaded nanostructured lipid carriers in lipopolysaccharide-induced depression and anxiety rat model. Int J Pharm 603:120670

    Article  CAS  PubMed  Google Scholar 

  396. Guo J, Fang M, Xiong Z, Zhou K, Zeng P (2024) Mechanistic insights into the anti-depressant effect of curcumin based on network pharmacology and experimental validation. Naunyn Schmiedeberg's Arch Pharmacol 397(1):583–598

  397. Wang Y, Shen Y, Yu X, Gu J, Zhang X, Zhou B, Sun Y, Xu C et al (2021) Role of NADPH oxidase-induced hypoxia-induced factor-1α increase in blood-brain barrier disruption after 2-hour focal ischemic stroke in rat. Neural Plast 2021:1–8

    Article  Google Scholar 

  398. Heidarzadeh-Rad N, Gökmen-Özel H, Kazemi A, Almasi N, Djafarian K (2020) Effects of a psychobiotic supplement on serum brain-derived neurotrophic factor levels in depressive patients: a post hoc analysis of a randomized clinical trial. J Neurogastroenterol Motil 26(4):486

    Article  PubMed  PubMed Central  Google Scholar 

  399. Dahiya D, Nigam PS (2022) Probiotics, prebiotics, synbiotics, and fermented foods as potential biotics in nutrition improving health via microbiome-gut-brain axis. Fermentation 8(7):303

    Article  CAS  Google Scholar 

  400. Suganya K, Koo B-S (2020) Gut–brain axis: role of gut microbiota on neurological disorders and how probiotics/prebiotics beneficially modulate microbial and immune pathways to improve brain functions. Int J Mol Sci 21(20):7551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  401. Thangaleela S, Sivamaruthi BS, Kesika P, Chaiyasut C (2022) Role of probiotics and diet in the management of neurological diseases and mood states: a review. Microorganisms 10(11):2268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  402. Akkasheh G, Kashani-Poor Z, Tajabadi-Ebrahimi M, Jafari P, Akbari H, Taghizadeh M, Memarzadeh MR, Asemi Z et al (2016) Clinical and metabolic response to probiotic administration in patients with major depressive disorder: a randomized, double-blind, placebo-controlled trial. Nutrition 32(3):315–320

    Article  CAS  PubMed  Google Scholar 

  403. Birmann PT, Casaril AM, Pesarico AP, Caballero PS, Smaniotto TÂ, Rodrigues RR, Moreira ÂN, Conceição FR et al (2021) Komagataella pastoris KM71H modulates neuroimmune and oxidative stress parameters in animal models of depression: a proposal for a new probiotic with antidepressant-like effect. Pharmacol Res 171:105740

    Article  CAS  PubMed  Google Scholar 

  404. Jiang J, Fu Y, Tang A, Gao X, Zhang D, Shen Y et al (2023) Sex difference in prebiotics on gut and blood–brain barrier dysfunction underlying stress-induced anxiety and depression. CNS Neurosci Ther 29:115–128

  405. Chupel MU, Minuzzi LG, Furtado G, Santos ML, Hogervorst E, Filaire E, Teixeira AM (2018) Exercise and taurine in inflammation, cognition, and peripheral markers of blood-brain barrier integrity in older women. Appl Physiol Nutr Metab 43(7):733–741

    Article  CAS  PubMed  Google Scholar 

  406. Erickson KI, Prakash RS, Voss MW, Chaddock L, Hu L, Morris KS, White SM, Wójcicki TR et al (2009) Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus 19(10):1030–1039

    Article  PubMed  PubMed Central  Google Scholar 

  407. Firth J, Stubbs B, Vancampfort D, Schuch F, Lagopoulos J, Rosenbaum S, Ward PB (2018) Effect of aerobic exercise on hippocampal volume in humans: a systematic review and meta-analysis. Neuroimage 166:230–238

    Article  PubMed  Google Scholar 

  408. Krogh J, Rostrup E, Thomsen C, Elfving B, Videbech P, Nordentoft M (2014) The effect of exercise on hippocampal volume and neurotrophines in patients with major depression–a randomized clinical trial. J Affect Disord 165:24–30

    Article  PubMed  Google Scholar 

  409. Luca M, Luca A (2019) Oxidative stress-related endothelial damage in vascular depression and vascular cognitive impairment: beneficial effects of aerobic physical exercise. Oxidative Med Cell Longev:2019

  410. Franzoni F, Federighi G, Fusi J, Cerri E, Banducci R, Petrocchi A, Innocenti A, Pruneti C et al (2017) Physical exercise improves total antioxidant capacity and gene expression in rat hippocampal tissue. Arch Ital Biol 155(1/2):1–10

    CAS  PubMed  Google Scholar 

  411. Park HJ, Rhie SJ, Shim I, Park HJ, Rhie SJ, Shim I (2022) Regulatory role of cytokines on etiology of depression in animal models: their biological mechanisms and clinical implication with physical exercise. J Exerc Rehabil 18(6):344–349

    Article  PubMed  PubMed Central  Google Scholar 

  412. Wilkowska A, Szałach ŁP, Cubała WJ (2021) Gut microbiota in depression: a focus on ketamine. Front Behav Neurosci 15:693362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  413. Letchumanan V, Thye AY-K, Tan LT-H, Law JW-F, Johnson D, Ser H-L, Bhuvanendran S, Thurairajasingam S et al (2021) IDDF2021-ABS-0164 gut feelings in depression: microbiota dysbiosis in response to antidepressants. BMJ Publishing Group

    Google Scholar 

  414. Mou Y, Du Y, Zhou L, Yue J, Hu X, Liu Y, Chen S, Lin X et al (2022) Gut microbiota interact with the brain through systemic chronic inflammation: implications on neuroinflammation, neurodegeneration, and aging. Front Immunol 13:796288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  415. Ferrari S, Mulè S, Parini F, Galla R, Ruga S, Rosso G et al (2024) The influence of the gut-brain axis on anxiety and depression: a review of the literature on the use of probiotics. J Tradit Complement Med

  416. Pan J, Lu D, Yu L, Ye Z, Duan H, Narbad A, Zhao J, Zhai Q et al (2024) Nonylphenol induces depressive behavior in rats and affects gut microbiota: a dose–dependent effect. Environ Pollut 344:123357

    Article  CAS  PubMed  Google Scholar 

  417. Zhao M, Ren Z, Zhao A, Tang Y, Kuang J, Li M et al (2024) Gut bacteria-driven homovanillic acid alleviates depression by modulating synaptic integrity. Cell Metab

  418. Halvorson CS, Sánchez-Lafuente CL, Johnston JN, Kalynchuk LE, Caruncho HJ (2024) Molecular mechanisms of reelin in the enteric nervous system and the microbiota–gut–brain axis: implications for depression and antidepressant therapy. Int J Mol Sci 25(2):814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  419. Mao Q, Zhang H, Zhang Z, Lu Y, Pan J, Guo D et al (2024) Co-decoction of Lilii bulbus and Radix Rehmannia Recens and its key bioactive ingredient verbascoside inhibit neuroinflammation and intestinal permeability associated with chronic stress-induced depression via the gut microbiota-brain axis. Phytomedicine:155510

  420. Varesi A, Campagnoli LIM, Chirumbolo S, Candiano B, Carrara A, Ricevuti G et al (2023) The brain-gut-microbiota interplay in depression: a key to design innovative therapeutic approaches. Pharmacol Res:106799

  421. Dong TS, Mayer E (2024) Advances in brain-gut-microbiome interactions: a comprehensive update on signaling mechanisms, disorders, and therapeutic implications. Cellular and molecular gastroenterology and hepatology

  422. Brown S-L, Bleich A, Van Praag HM (2023) The monoamine hypothesis of depression: the case for serotonin. In: Role of serotonin in psychiatric disorders. Routledge, pp. 91–128

    Chapter  Google Scholar 

  423. Goldman LS, Nielsen NH, Champion HC, Council on Scientific Affairs AMA (1999) Awareness, diagnosis, and treatment of depression. J Gen Intern Med 14(9):569–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  424. Demiryürek E, Cekic D, Işsever K, Genc AC, Yaylaci S, Demiryürek BE (2022) Depression and anxiety disorders in COVID-19 survivors: role of inflammatory predictors. Arch Neuropsychiatry 59(2):105

    Google Scholar 

  425. Kumar A, Singh R, Kaur J, Pandey S, Sharma V, Thakur L et al (2021) Wuhan to world: the COVID-19 pandemic. Front Cell Infect Microbiol 11:596201

  426. Rogers JP, Chesney E, Oliver D, Pollak TA, McGuire P, Fusar-Poli P, Zandi MS, Lewis G et al (2020) Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry 7(7):611–627

    Article  PubMed  PubMed Central  Google Scholar 

  427. Mazza MG, Palladini M, Poletti S, Benedetti F (2022) Post-COVID-19 depressive symptoms: epidemiology, pathophysiology, and pharmacological treatment. CNS Drugs 36(7):681–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  428. Mingoti MED, Bertollo AG, Simões JLB, Francisco GR, Bagatini MD, Ignácio ZM (2022) COVID-19, oxidative stress, and neuroinflammation in the depression route. J Mol Neurosci 72(6):1166–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  429. Devaux CA, Rolain J-M, Raoult D (2020) ACE2 receptor polymorphism: susceptibility to SARS-CoV-2, hypertension, multi-organ failure, and COVID-19 disease outcome. J Microbiol Immunol Infect 53(3):425–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  430. Tremblay M-E, Madore C, Bordeleau M, Tian L, Verkhratsky A (2020) Neuropathobiology of COVID-19: the role for glia. Front Cell Neurosci 14:592214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  431. Brann DH, Tsukahara T, Weinreb C, Lipovsek M, Van den Berge K, Gong B, Chance R, Macaulay IC et al (2020) Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci Adv 6(31):eabc5801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  432. Lukassen S, Chua RL, Trefzer T, Kahn NC, Schneider MA, Muley T, Winter H, Meister M et al (2020) SARS-CoV-2 receptor ACE 2 and TMPRSS 2 are primarily expressed in bronchial transient secretory cells. EMBO J 39(10):e105114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  433. Ribeiro DE, Oliveira-Giacomelli Á, Glaser T, Arnaud-Sampaio VF, Andrejew R, Dieckmann L, Baranova J, Lameu C et al (2021) Hyperactivation of P2X7 receptors as a culprit of COVID-19 neuropathology. Mol Psychiatry 26(4):1044–1059

    Article  CAS  PubMed  Google Scholar 

  434. Dempsey LA (2021) SARS-CoV-2 neuroinvasion. Nat Immunol 22(1):7–7

    PubMed  Google Scholar 

  435. Solomon IH, Normandin E, Bhattacharyya S, Mukerji SS, Keller K, Ali AS, Adams G, Hornick JL et al (2020) Neuropathological features of COVID-19. N Engl J Med 383(10):989–992

    Article  PubMed  Google Scholar 

  436. Khatoon F, Prasad K, Kumar V (2022) COVID-19 associated nervous system manifestations. Sleep Med 91:231–236

    Article  PubMed  Google Scholar 

  437. Zhang Y, Archie SR, Ghanwatkar Y, Sharma S, Nozohouri S, Burks E, Mdzinarishvili A, Liu Z et al (2022) Potential role of astrocyte angiotensin converting enzyme 2 in the neural transmission of COVID-19 and a neuroinflammatory state induced by smoking and vaping. Fluids Barriers CNS 19(1):46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  438. Burks SM, Rosas-Hernandez H, Ramirez-Lee MA, Cuevas E, Talpos JC (2021) Can SARS-CoV-2 infect the central nervous system via the olfactory bulb or the blood-brain barrier? Brain Behav Immun 95:7–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  439. Vanderheiden A, Klein RS (2022) Neuroinflammation and COVID-19. Curr Opin Neurobiol 76:102608

  440. Zubair AS, McAlpine LS, Gardin T, Farhadian S, Kuruvilla DE, Spudich S (2020) Neuropathogenesis and neurologic manifestations of the coronaviruses in the age of coronavirus disease 2019: a review. JAMA Neurol 77(8):1018–1027

    Article  PubMed  PubMed Central  Google Scholar 

  441. e Silva NML, Barros-Aragão FG, De Felice FG, Ferreira ST (2022) Inflammation at the crossroads of COVID-19, cognitive deficits and depression. Neuropharmacology 209:109023

    Article  Google Scholar 

  442. Li Y, Li M, Wang M, Zhou Y, Chang J, Xian Y et al (2020) Acute cerebrovascular disease following COVID-19: a single center, retrospective, observational study. Stroke and Vascular Neurology 5(3)

  443. Sultana S, Ananthapur V (2020) COVID-19 and its impact on neurological manifestations and mental health: the present scenario. Neurol Sci 41(11):3015–3020

    Article  PubMed  PubMed Central  Google Scholar 

  444. Rodríguez-Morales J, Guartazaca-Guerrero S, Rizo-Téllez SA, Viurcos-Sanabria R, Barrón EV, Hernández-Valencia AF, Nava P, Escobedo G et al (2022) Blood-brain barrier damage is pivotal for SARS-CoV-2 infection to the central nervous system. Exp Neurobiol 31(4):270–276

    Article  PubMed  PubMed Central  Google Scholar 

  445. Lorkiewicz P, Waszkiewicz N (2021) Biomarkers of post-COVID depression. J Clin Med 10(18):4142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  446. Liu ST, Lin SC, Chang JPC, Yang KJ, Chu CS, Yang CC et al (2023) The clinical observation of inflammation theory for depression: the initiative of the Formosa long COVID multicenter study (FOCuS). Clin Psychopharmacol Neurosci 21(1):10

  447. Alpert O, Begun L, Garren P, Solhkhah R (2020) Cytokine storm induced new onset depression in patients with COVID-19. A new look into the association between depression and cytokines-two case reports. Brain Behav Immun Health 9:100173

    Article  PubMed  PubMed Central  Google Scholar 

  448. Kucukkarapinar M, Yay-Pence A, Yildiz Y, Buyukkoruk M, Yaz-Aydin G, Deveci-Bulut TS, Gulbahar O, Senol E et al (2022) Psychological outcomes of COVID-19 survivors at sixth months after diagnose: the role of kynurenine pathway metabolites in depression, anxiety, and stress. J Neural Transm 129(8):1077–1089

    Article  CAS  PubMed  Google Scholar 

  449. Ida T, Hara M, Nakamura Y, Kozaki S, Tsunoda S, Ihara H (2008) Cytokine-induced enhancement of calcium-dependent glutamate release from astrocytes mediated by nitric oxide. Neurosci Lett 432(3):232–236

    Article  CAS  PubMed  Google Scholar 

  450. Miller AH, Maletic V, Raison CL (2009) Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry 65(9):732–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  451. Sankowski R, Mader S, Valdés-Ferrer SI (2015) Systemic inflammation and the brain: novel roles of genetic, molecular, and environmental cues as drivers of neurodegeneration. Front Cell Neurosci 9:28

    Article  PubMed  PubMed Central  Google Scholar 

  452. Matschke J, Lütgehetmann M, Hagel C, Sperhake JP, Schröder AS, Edler C, Mushumba H, Fitzek A et al (2020) Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol 19(11):919–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  453. Kanberg N, Ashton NJ, Andersson L-M, Yilmaz A, Lindh M, Nilsson S, Price RW, Blennow K et al (2020) Neurochemical evidence of astrocytic and neuronal injury commonly found in COVID-19. Neurology 95(12):e1754–e1759

    Article  CAS  PubMed  Google Scholar 

  454. Alzarea SI, Qasim S, Afzal M, Alsaidan OA, Alhassan HH, Alharbi M, Alqinyah M, Alenazi FS (2023) Anandamide reuptake inhibitor (VDM11) as a Possible candidate for COVID 19 associated depression; a combination of network pharmacology, molecular docking and in vivo experimental analysis. Processes 11(1):143

    Article  CAS  Google Scholar 

  455. Pape K, Tamouza R, Leboyer M, Zipp F (2019) Immunoneuropsychiatry—novel perspectives on brain disorders. Nat Rev Neurol 15(6):317–328

    Article  PubMed  Google Scholar 

  456. Zhao H, Zhang X, Dai Z, Feng Y, Li Q, Zhang JH, Liu X, Chen Y et al (2016) P2X7 receptor suppression preserves blood-brain barrier through inhibiting RhoA activation after experimental intracerebral hemorrhage in rats. Sci Rep 6(1):1–14

    Google Scholar 

  457. Saifman J, Colverson A, Prem A, Chomiak J, Doré S (2023) Therapeutic potential of music-based interventions on the stress response and neuroinflammatory biomarkers in cOVID-19: a review. Music Sci 6:20592043221135808

    Article  Google Scholar 

  458. Knight WE, Rickard NS (2001) Relaxing music prevents stress-induced increases in subjective anxiety, systolic blood pressure, and heart rate in healthy males and females. J Music Ther 38(4):254–272

    Article  CAS  PubMed  Google Scholar 

  459. Koelsch S, Boehlig A, Hohenadel M, Nitsche I, Bauer K, Sack U (2016) The impact of acute stress on hormones and cytokines and how their recovery is affected by music-evoked positive mood. Sci Rep 6(1):1–11

    Article  Google Scholar 

  460. Kim H-Y, Ko K-J, Nam S-Y, Jeong H-J, Kim H-M (2015) The sound of a Buk (Korean traditional drum) attenuates anaphylactic reactions by the activation of estrogen receptor-β. Int Arch Allergy Immunol 167(4):242–249

    Article  CAS  PubMed  Google Scholar 

  461. Wachi M, Koyama M, Utsuyama M, Bittman BB, Kitagawa M, Hirokawa K (2007) Recreational music-making modulates natural killer cell activity, cytokines, and mood states in corporate employees. Med Sci Monit 13(2):CR57–CR70

    PubMed  Google Scholar 

  462. Khan SH, Kitsis M, Golovyan D, Wang S, Chlan LL, Boustani M, Khan BA (2018) Effects of music intervention on inflammatory markers in critically ill and post-operative patients: a systematic review of the literature. Heart Lung 47(5):489–496

    Article  PubMed  PubMed Central  Google Scholar 

  463. Chlan LL, Engeland WC, Anthony A, Guttormson J (2007) Influence of music on the stress response in patients receiving mechanical ventilatory support: a pilot study. Am J Crit Care 16(2):141–145

    Article  PubMed  Google Scholar 

  464. Hirokawa E, Ohira H (2003) The effects of music listening after a stressful task on immune functions, neuroendocrine responses, and emotional states in college students. J Music Ther 40(3):189–211

    Article  PubMed  Google Scholar 

  465. Hu S, Tucker L, Wu C, Yang L (2020) Beneficial effects of exercise on depression and anxiety during the COVID-19 pandemic: a narrative review. Front Psychiatry 11:587557

    Article  PubMed  PubMed Central  Google Scholar 

  466. Sleiman SF, Henry J, Al-Haddad R, El Hayek L, Abou Haidar E, Stringer T, Ulja D, Karuppagounder SS et al (2016) Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body β-hydroxybutyrate. elife 5:e15092

    Article  PubMed  PubMed Central  Google Scholar 

  467. Qiao X, Gai H, Su R, Deji C, Cui J, Lai J, Zhu Y (2018) PI3K-AKT-GSK3β-CREB signaling pathway regulates anxiety-like behavior in rats following alcohol withdrawal. J Affect Disord 235:96–104

    Article  CAS  PubMed  Google Scholar 

  468. De Sousa RAL, Improta-Caria AC, Aras-Júnior R, de Oliveira EM, Soci ÚPR, Cassilhas RC (2021) Physical exercise effects on the brain during COVID-19 pandemic: links between mental and cardiovascular health. Neurol Sci 42:1325–1334

    Article  PubMed  PubMed Central  Google Scholar 

  469. Wang LR, Baek S-S (2018) Treadmill exercise activates PI3K/Akt signaling pathway leading to GSK-3β inhibition in the social isolated rat pups. J Exerc Rehabil 14(1):4

    Article  PubMed  PubMed Central  Google Scholar 

  470. Li L, McBride DW, Doycheva D, Dixon BJ, Krafft PR, Zhang JH, Tang J (2015) G-CSF attenuates neuroinflammation and stabilizes the blood–brain barrier via the PI3K/Akt/GSK-3β signaling pathway following neonatal hypoxia-ischemia in rats. Exp Neurol 272:135–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  471. Chi OZ, Mellender SJ, Kiss GK, Liu X, Weiss HR (2017) Blood-brain barrier disruption was less under isoflurane than pentobarbital anesthesia via a PI3K/Akt pathway in early cerebral ischemia. Brain Res Bull 131:1–6

    Article  CAS  PubMed  Google Scholar 

  472. Krishnan V, Nestler EJ (2011) Animal models of depression: molecular perspectives. Molecular and Functional Models in Neuropsychiatry:121–147

  473. Karisetty BC, Khandelwal N, Kumar A, Chakravarty S (2017) Sex difference in mouse hypothalamic transcriptome profile in stress-induced depression model. Biochem Biophys Res Commun 486(4):1122–1128

    Article  CAS  PubMed  Google Scholar 

  474. Karisetty BC, Joshi PC, Kumar A, Chakravarty S (2017) Sex differences in the effect of chronic mild stress on mouse prefrontal cortical BDNF levels: a role of major ovarian hormones. Neuroscience 356:89–101

    Article  CAS  PubMed  Google Scholar 

  475. Erickson MA, Banks WA (2019) Age-associated changes in the immune system and blood–brain barrier functions. Int J Mol Sci 20(7):1632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  476. Nobis A, Zalewski D, Waszkiewicz N (2020) Peripheral markers of depression. J Clin Med 9(12):3793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  477. Gold PW (2015) The organization of the stress system and its dysregulation in depressive illness. Mol Psychiatry 20(1):32–47

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Lalitha Biswas, Associate Professor, Amrita School of Nanosciences and Molecular Medicine for the recommendations.

Funding

The work was supported by Amrita Vishwa Vidyapeetham to AKV and partly by SERB-POWER Fellowship to SC [SPF/2021/000045].

Author information

Authors and Affiliations

Authors

Contributions

SMV and SP were involved in conceptualization, data curation, formal analysis, and writing—original draft preparation and review and editing. AN, AJ, SG, and RS were involved in data curation, formal analysis, and writing—original draft preparation. BM and LB were involved in supervision and writing—review and editing. AKV and SC participated in data curation, formal analysis, funding acquisition, supervision, and writing—review and editing. All authors contributed to and have approved the final manuscript.

Corresponding authors

Correspondence to Athira K V or Sumana Chakravarty.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Preclinical and clinical studies have demonstrated the contribution of blood-brain barrier (BBB) disruption to the pathogenesis and sequelae of MDD.

• Peripheral inflammation and neuroinflammation play critical roles in BBB disruption.

• Gut-brain axis might have a significant role in BBB integrity.

• The disruption of the BBB contributes to the complex interplay between depression and a myriad of medical comorbidities.

• COVID-19 has been reported to lead to BBB disruption and, as a result, to neuropsychiatric findings.

• To achieve antidepressant effects, novel therapeutic approaches that address BBB deficiencies can be promising.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varghese, S.M., Patel, S., Nandan, A. et al. Unraveling the Role of the Blood-Brain Barrier in the Pathophysiology of Depression: Recent Advances and Future Perspectives. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04205-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04205-5

Keywords

Navigation