Skip to main content

Advertisement

Log in

The Impact of Prevotella on Neurobiology in Aging: Deciphering Dendritic Cell Activity and Inflammatory Dynamics

  • Review
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

A Correction to this article was published on 26 April 2024

This article has been updated

Abstract

Prevotella species, notably Prevotella copri, significantly populate the human gut. In particular, P. copri is prevalent among non-Western populations with diets high in fiber. These species show complex relationships with diverse health aspects, associating with beneficial outcomes, including reduced visceral fat and improved glucose tolerance. Studies implicate various Prevotella species in specific diseases. Prevotella nigrescens and Porphyromonas gingivalis were linked to periodontal disease, promoting immune responses and influencing T helper type 17 (Th17) cells. Prevotella bivia was associated with bacterial vaginosis and a specific increase in activated cells in the vaginal mucosa. In contrast, they have shown substantial potential for inducing connective tissue degradation and alveolar bone resorption. Prevotella’s role in neuroinflammatory disorders and autoinflammatory conditions such as Alzheimer’s disease and Parkinson’s disease has also been noted. The complex relationship between Prevotella and age-related conditions further extends to neurobiological changes in aging, with varying associations with Alzheimer’s, Parkinson’s, and other inflammatory conditions. Studies have also identified Prevotella to be implicated in cognitive decline in middle aged and the elderly. Future directions in this research area are anticipated to explore Prevotella-associated inflammatory mechanisms and therapeutic interventions. Investigating specific drug targets and immunomodulatory measures could lead to novel therapeutic strategies. Understanding how Prevotella-induced inflammation interacts with aging diseases would offer promising insights for treatments and interventions. This review urges ongoing research to discover therapeutic targets and mechanisms for moderating Prevotella-associated inflammation to further enhance our understanding and improve health outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

No new data was generated in this paper.

Change history

References

  1. Tett A, Pasolli E, Masetti G, Ercolini D, Segata N (2021) Prevotella diversity, niches and interactions with the human host. Nat Rev Microbiol 19(9):585–599. https://doi.org/10.1038/s41579-021-00559-y

    Article  CAS  PubMed  Google Scholar 

  2. Rosenberg E (2014) The family Prevotellaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38954-2_131

    Chapter  Google Scholar 

  3. Accetto T, Avguštin G (2019) The diverse and extensive plant polysaccharide degradative apparatuses of the rumen and hindgut Prevotella species: a factor in their ubiquity? Syst Appl Microbiol 42(2):107–116. https://doi.org/10.1016/j.syapm.2018.10.001

    Article  CAS  PubMed  Google Scholar 

  4. Chen T, Long W, Zhang C, Liu S, Zhao L, Hamaker BR (2017) Fiber-utilizing capacity varies in Prevotella- versus Bacteroides-dominated gut microbiota. Sci Rep 7(1):2594. https://doi.org/10.1038/s41598-017-02995-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Portincasa P, Bonfrate L, Vacca M et al (2022) Gut microbiota and short chain fatty acids: implications in glucose homeostasis. Int J Mol Sci 23(3):1105. https://doi.org/10.3390/ijms23031105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hayashi H, Shibata K, Sakamoto M, Tomita S, Benno Y (2007) Prevotella copri sp. Nov. and Prevotella stercorea sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 57(5):941–946. https://doi.org/10.1099/ijs.0.64778-0

    Article  CAS  PubMed  Google Scholar 

  7. Könönen E, Gursoy UK (2022) Oral Prevotella species and their connection to events of clinical relevance in gastrointestinal and respiratory tracts. Front Microbiol 12:798763. https://doi.org/10.3389/fmicb.2021.798763

    Article  PubMed  PubMed Central  Google Scholar 

  8. Richter HE, Carnes MU, Komesu YM et al (2022) Association between the urogenital microbiome and surgical treatment response in women undergoing midurethral sling operation for mixed urinary incontinence. Am J Obstet Gynecol 226(1):93.e1-93.e15. https://doi.org/10.1016/j.ajog.2021.07.008

    Article  PubMed  Google Scholar 

  9. Dubourg G, Morand A, Mekhalif F et al (2020) Deciphering the urinary microbiota repertoire by culturomics reveals mostly anaerobic bacteria from the gut. Front Microbiol 11:513305. https://doi.org/10.3389/fmicb.2020.513305

    Article  PubMed  PubMed Central  Google Scholar 

  10. Thomas-White K, Forster SC, Kumar N et al (2018) Culturing of female bladder bacteria reveals an interconnected urogenital microbiota. Nat Commun 9(1):1557. https://doi.org/10.1038/s41467-018-03968-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tett A, Huang KD, Asnicar F et al (2019) The Prevotella copri complex comprises four distinct clades underrepresented in westernized populations. Cell Host Microbe 26(5):666-679.e7. https://doi.org/10.1016/j.chom.2019.08.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wu GD, Chen J, Hoffmann C et al (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334(6052):105–108. https://doi.org/10.1126/science.1208344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. David LA, Maurice CF, Carmody RN et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505(7484):559–563. https://doi.org/10.1038/nature12820

    Article  CAS  PubMed  Google Scholar 

  14. De Filippis F, Pellegrini N, Vannini L et al (2016) High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 65(11):1812–1821. https://doi.org/10.1136/gutjnl-2015-309957

    Article  CAS  PubMed  Google Scholar 

  15. Kovatcheva-Datchary P, Nilsson A, Akrami R et al (2015) Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of Prevotella. Cell Metab 22(6):971–982. https://doi.org/10.1016/j.cmet.2015.10.001

    Article  CAS  PubMed  Google Scholar 

  16. Asnicar F, Berry SE, Valdes AM et al (2021) Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. Nat Med 27(2):321–332. https://doi.org/10.1038/s41591-020-01183-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mangiola F, Nicoletti A, Gasbarrini A, Ponziani FR (2018) Gut microbiota and aging. Eur Rev Med Pharmacol Sci 22(21):7404–7413. https://doi.org/10.26355/eurrev_201811_16280

    Article  CAS  PubMed  Google Scholar 

  18. Badal VD, Vaccariello ED, Murray ER et al (2020) The gut microbiome, aging, and longevity: a systematic review. Nutrients 12(12):3759. https://doi.org/10.3390/nu12123759

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gmür R, Thurnheer T (2002) Direct quantitative differentiation between Prevotella intermedia and Prevotella nigrescens in clinical specimens. Microbiology 148(5):1379–1387. https://doi.org/10.1099/00221287-148-5-1379

    Article  PubMed  Google Scholar 

  20. Zambon JJ, Reynolds HS, Slots J (1981) Black-pigmented bacteroides spp. in the human oral cavity. Infect Immun 32(1):198–203. https://doi.org/10.1128/iai.32.1.198-203.1981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Segata N, Haake S, Mannon P et al (2012) Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome Biol 13(6):R42. https://doi.org/10.1186/gb-2012-13-6-r42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Donati C, Zolfo M, Albanese D et al (2016) Uncovering oral Neisseria tropism and persistence using metagenomics sequencing. Nat Microbiol 1(7):16070. https://doi.org/10.1038/nmicrobiol.2016.70

    Article  CAS  PubMed  Google Scholar 

  23. Schmidt TS, Hayward MR, Coelho LP et al (2019) Extensive transmission of microbes along the gastrointestinal tract. Elife 8:e42693. https://doi.org/10.7554/eLife.42693

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kolenbrander PE, Palmer RJ Jr, Periasamy S, Jakubovics NS (2010) Oral multispecies biofilm development and the key role of cell–cell distance. Nat Rev Microbiol 8(7):471–480. https://doi.org/10.1038/nrmicro2381

    Article  CAS  PubMed  Google Scholar 

  25. Kolenbrander PE (2000) Oral microbial communities: biofilms, interactions, and genetic systems. Annu Rev Microbiol 54(1):413–437. https://doi.org/10.1146/annurev.micro.54.1.413

    Article  CAS  PubMed  Google Scholar 

  26. The Human Microbiome Project Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486(7402):207–214. https://doi.org/10.1038/nature11234

    Article  CAS  PubMed Central  Google Scholar 

  27. Qin J, MetaHIT Consortium, Li R et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285):59–65. https://doi.org/10.1038/nature08821

  28. Pasolli E, Schiffer L, Manghi P et al (2017) Accessible, curated metagenomic data through ExperimentHub. Nat Methods 14(11):1023–1024. https://doi.org/10.1038/nmeth.4468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Scher JU, Sczesnak A, Longman RS et al (2013) Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. Elife 2:e01202. https://doi.org/10.7554/eLife.01202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cani PD (2018) Human gut microbiome: hopes, threats and promises. Gut 67(9):1716–1725. https://doi.org/10.1136/gutjnl-2018-316723

    Article  CAS  PubMed  Google Scholar 

  31. Claus SP (2019) The strange case of Prevotella copri: Dr. Jekyll or Mr. Hyde?. Cell Host Microbe 26(5):577–578. https://doi.org/10.1016/j.chom.2019.10.020

  32. Pianta A, Arvikar S, Strle K et al (2017) Evidence of the immune relevance of Prevotella copri, a gut microbe, in patients with rheumatoid arthritis. Arthritis Rheumatol 69(5):964–975. https://doi.org/10.1002/art.40003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wen C, Zheng Z, Shao T et al (2017) Quantitative metagenomics reveals unique gut microbiome biomarkers in ankylosing spondylitis. Genome Biol 18(1). https://doi.org/10.1186/s13059-017-1271-6

  34. Iljazovic A, Amend L, Galvez EJC, de Oliveira R, Strowig T (2021) Modulation of inflammatory responses by gastrointestinal Prevotella spp. – from associations to functional studies. Int J Med Microbiol 311(2):151472. https://doi.org/10.1016/j.ijmm.2021.151472

    Article  CAS  PubMed  Google Scholar 

  35. Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9(5):313–323. https://doi.org/10.1038/nri2515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cury PR, Carmo JP, Horewicz VV, Santos JN, Barbuto JA (2013) Altered phenotype and function of dendritic cells in individuals with chronic periodontitis. Arch Oral Biol 58(9):1208–1216. https://doi.org/10.1016/j.archoralbio.2013.03.013

    Article  CAS  PubMed  Google Scholar 

  37. Horst OV, Tompkins KA, Coats SR, Braham PH, Darveau RP, Dale BA (2009) TGF-β1 inhibits TLR-mediated odontoblast responses to oral bacteria. J Dent Res 88(4):333–338. https://doi.org/10.1177/0022034509334846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ji S, Kim Y, Min BM, Han SH, Choi Y (2007) Innate immune responses of gingival epithelial cells to nonperiodontopathic and periodontopathic bacteria. J Periodontal Res 42(6):503–510. https://doi.org/10.1111/j.1600-0765.2007.00974.x

    Article  CAS  PubMed  Google Scholar 

  39. de Aquino SG, Abdollahi-Roodsaz S, Koenders MI et al (2014) Periodontal pathogens directly promote autoimmune experimental arthritis by inducing a TLR2- and IL-1–driven Th17 response. J Immunol 192(9):4103–4111. https://doi.org/10.4049/jimmunol.1301970

    Article  CAS  PubMed  Google Scholar 

  40. Schincaglia GP, Hong BY, Rosania A et al (2017) Clinical, immune, and microbiome traits of gingivitis and peri-implant mucositis. J Dent Res 96(1):47–55. https://doi.org/10.1177/0022034516668847

    Article  CAS  PubMed  Google Scholar 

  41. Greer A, Irie K, Hashim A et al (2016) Site-specific neutrophil migration and CXCL2 expression in periodontal tissue. J Dent Res 95(8):946–952. https://doi.org/10.1177/0022034516641036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Matsui A, Jin JO, Johnston CD, Yamazaki H, Houri-Haddad Y, Rittling SR (2014) Pathogenic bacterial species associated with endodontic infection evade innate immune control by disabling neutrophils. Infect Immun 82(10):4068–4079. https://doi.org/10.1128/iai.02256-14

    Article  PubMed  PubMed Central  Google Scholar 

  43. Uriarte SM, Edmisson JS, Jimenez-Flores E (2016) Human neutrophils and oral microbiota: a constant tug-of-war between a harmonious and a discordant coexistence. Immunol Rev 273(1):282–298. https://doi.org/10.1111/imr.12451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Anahtar MN, Byrne EH, Doherty KE et al (2015) Cervicovaginal bacteria are a major modulator of host inflammatory responses in the female genital tract. Immunity 42(5):965–976. https://doi.org/10.1016/j.immuni.2015.04.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gosmann C, Anahtar MN, Handley SA et al (2017) Lactobacillus-deficient cervicovaginal bacterial communities are associated with increased HIV acquisition in young South African women. Immunity 46(1):29–37. https://doi.org/10.1016/j.immuni.2016.12.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Si J, You HJ, Yu J, Sung J, Ko G (2017) Prevotella as a hub for vaginal microbiota under the influence of host genetics and their association with obesity. Cell Host Microbe 21(1):97–105. https://doi.org/10.1016/j.chom.2016.11.010

    Article  CAS  PubMed  Google Scholar 

  47. Morrison DC, Ryan JL (1987) Endotoxins and disease mechanisms. Annu Rev Med 38(1):417–432. https://doi.org/10.1146/annurev.me.38.020187.002221

    Article  CAS  PubMed  Google Scholar 

  48. Birkedal-Hansen H (1993) Role of cytokines and inflammatory mediators in tissue destruction. J Periodontal Res 28(7):500–510. https://doi.org/10.1111/j.1600-0765.1993.tb02113.x

    Article  CAS  PubMed  Google Scholar 

  49. Shapira L, Champagne C, Van Dyke TE, Amar S (1998) Strain-dependent activation of monocytes and inflammatory macrophages by lipopolysaccharide of Porphyromonas gingivalis. Infect Immun 66(6):2736–2742. https://doi.org/10.1128/iai.66.6.2736-2742.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Janský L, Reymanová P, Kopecký J (2003) Dynamics of cytokine production in human peripheral blood mononuclear cells stimulated by LPS or infected by Borrelia. Physiol Res 52(5):593–598

    Article  PubMed  Google Scholar 

  51. Rossomando EF, Kennedy JE, Hadjimichael J (1990) Tumour necrosis factor alpha in gingival crevicular fluid as a possible indicator of periodontal disease in humans. Arch Oral Biol 35(6):431–434. https://doi.org/10.1016/0003-9969(90)90205-o

    Article  CAS  PubMed  Google Scholar 

  52. Stashenko P, Jandinski JJ, Fujiyoshi P, Rynar J, Socransky SS (1991) Tissue levels of bone resorptive cytokines in periodontal disease. J Periodontol 62(8):504–509. https://doi.org/10.1902/jop.1991.62.8.504

    Article  CAS  PubMed  Google Scholar 

  53. Abu-Amer Y, Ross FP, Edwards J, Teitelbaum SL (1997) Lipopolysaccharide-stimulated osteoclastogenesis is mediated by tumor necrosis factor via its P55 receptor. J Clin Invest 100(6):1557–1565. https://doi.org/10.1172/jci119679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kobayashi K, Takahashi N, Jimi E et al (2000) Tumor necrosis factor α stimulates osteoclast differentiation by a mechanism independent of the odf/rankl–rank interaction. J Exp Med 191(2):275–286. https://doi.org/10.1084/jem.191.2.275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Assuma R, Oates T, Cochran D, Amar S, Graves DT (1998) IL-1 and TNF antagonists inhibit the inflammatory response and bone loss in experimental periodontitis. J Immunol 160(1):403–409. https://doi.org/10.4049/jimmunol.160.1.403

    Article  CAS  PubMed  Google Scholar 

  56. Nagaoka S, Tokuda M, Sakuta T et al (1996) Interleukin-8 gene expression by human dental pulp fibroblast in cultures stimulated with Prevotella intermedia lipopolysaccharide. J Endod 22(1):9–12. https://doi.org/10.1016/s0099-2399(96)80228-7

    Article  CAS  PubMed  Google Scholar 

  57. Tokuda M, Nagaoka S, Torii M (2003) Interleukin-10 receptor expression in human dental pulp cells in response to lipopolysaccharide from Prevotella intermedia. J Endod 29(1):48–50. https://doi.org/10.1097/00004770-200301000-00013

    Article  PubMed  Google Scholar 

  58. Tokuda M, Sakuta T, Fushuku A, Torii M, Nagaoka S (2001) Regulation of interleukin-6 expression in human dental pulp cell cultures stimulated with Prevotella intermedia lipopolysaccharide. J Endod 27(4):273–277. https://doi.org/10.1097/00004770-200104000-00008

    Article  CAS  PubMed  Google Scholar 

  59. Kim SJ, Choi EY, Kim EG et al (2007) Prevotella intermedia lipopolysaccharide stimulates release of tumor necrosis factor-α through mitogen-activated protein kinase signaling pathways in monocyte-derived macrophages. FEMS Immunol Med Microbiol 51(2):407–413. https://doi.org/10.1111/j.1574-695x.2007.00318.x

    Article  PubMed  Google Scholar 

  60. Huang Y, Tang J, Cai Z et al (2020) Prevotella induces the production of Th17 cells in the colon of mice. J Immunol Res 2020:1–14. https://doi.org/10.1155/2020/9607328

    Article  CAS  Google Scholar 

  61. Dinarello CA (1996) Biologic basis for interleukin-1 in disease. Blood 87(6):2095–2147. https://doi.org/10.1182/blood.v87.6.2095.bloodjournal8762095

    Article  CAS  PubMed  Google Scholar 

  62. Hoffman HM, Mueller JL, Broide DH, Wanderer AA, Kolodner RD (2001) Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat Genet 29(3):301–305. https://doi.org/10.1038/ng756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Aksentijevich I, Nowak M, Mallah M et al (2002) De novo CIAS1 mutations, cytokine activation, and evidence for genetic heterogeneity in patients with neonatal-onset multisystem inflammatory disease (NOMID): a new member of the expanding family of pyrin-associated autoinflammatory diseases. Arthritis Rheum 46(12):3340–3348. https://doi.org/10.1002/art.10688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Feldmann J, Prieur AM, Quartier P et al (2002) Chronic infantile neurological cutaneous and articular syndrome is caused by mutations in CIAS1, a gene highly expressed in polymorphonuclear cells and chondrocytes. Am J Hum Genet 71(1):198–203. https://doi.org/10.1086/341357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Goldbach-Mansky R, Dailey NJ, Canna SW et al (2006) Neonatal-onset multisystem inflammatory disease responsive to interleukin-1β inhibition. N Engl J Med 355(6):581–592. https://doi.org/10.1056/nejmoa055137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gattorno M, Tassi S, Carta S et al (2007) Pattern of interleukin-1β secretion in response to lipopolysaccharide and ATP before and after interleukin-1 blockade in patients with CIAS1 mutations. Arthritis Rheum 56(9):3138–3148. https://doi.org/10.1002/art.22842

    Article  CAS  PubMed  Google Scholar 

  67. Hoffman HM, Brydges SD (2011) Genetic and molecular basis of inflammasome-mediated disease. J Biol Chem 286(13):10889–10896. https://doi.org/10.1074/jbc.r110.135491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Masters SL, Dunne A, Subramanian SL et al (2010) Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nat Immunol 11(10):897–904. https://doi.org/10.1038/ni.1935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mandrup-Poulsen T (2010) IAPP boosts islet macrophage IL-1 in type 2 diabetes. Nat Immunol 11(10):881–883. https://doi.org/10.1038/ni1010-881

    Article  CAS  PubMed  Google Scholar 

  70. Maedler K, Sergeev P, Ris F et al (2002) Glucose-induced β cell production of IL-1β contributes to glucotoxicity in human pancreatic islets. J Clin Invest 110(6):851–860. https://doi.org/10.1172/jci200215318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Böni-Schnetzler M, Boller S, Debray S et al (2009) Free fatty acids induce a proinflammatory response in islets via the abundantly expressed interleukin-1 receptor I. Endocrinology 150(12):5218–5229. https://doi.org/10.1210/en.2009-0543

    Article  CAS  PubMed  Google Scholar 

  72. Westwell-Roper CY, Ehses JA, Verchere CB (2014) Resident macrophages mediate islet amyloid polypeptide–induced islet IL-1β production and β-cell dysfunction. Diabetes 63(5):1698–1711. https://doi.org/10.2337/db13-0863

    Article  CAS  PubMed  Google Scholar 

  73. Halle A, Hornung V, Petzold GC et al (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-β. Nat Immunol 9(8):857–865. https://doi.org/10.1038/ni.1636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Carter KW, Hung J, Powell BL et al (2008) Association of interleukin-1 gene polymorphisms with central obesity and metabolic syndrome in a coronary heart disease population. Hum Genet 124(3):199–206. https://doi.org/10.1007/s00439-008-0540-6

    Article  CAS  PubMed  Google Scholar 

  75. Jin L, Yuan RQ, Fuchs A et al (1997) Expression of interleukin-1β in human breast carcinoma. Cancer 80(3):421–434. https://doi.org/10.1002/(sici)1097-0142(19970801)80:3%3c421::aid-cncr10%3e3.0.co;2-z

    Article  CAS  PubMed  Google Scholar 

  76. Pantschenko AG, Pushkar I, Anderson KH et al (2003) The interleukin-1 family of cytokines and receptors in human breast cancer: implications for tumor progression. Int J Oncol 23(2):269–284. https://doi.org/10.3892/ijo.23.2.269

    Article  CAS  PubMed  Google Scholar 

  77. Kolb R, Phan L, Borcherding N et al (2016) Obesity-associated NLRC4 inflammasome activation drives breast cancer progression. Nat Commun 7:13007. https://doi.org/10.1038/ncomms13007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Böni-Schnetzler M, Méreau H, Rachid L et al (2021) IL-1beta promotes the age-associated decline of beta cell function. iScience 24(11):103250. https://doi.org/10.1016/j.isci.2021.103250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Starr ME, Saito M, Evers BM, Saito H (2015) Age-associated increase in cytokine production during systemic inflammation—II: the role of IL-1β in age-dependent IL-6 upregulation in adipose tissue. J Gerontol A Biol Sci Med Sci 70(12):1508–1515. https://doi.org/10.1093/gerona/glu197

    Article  CAS  PubMed  Google Scholar 

  80. Khedr EM, Omeran N, Karam-Allah Ramadan H, Ahmed GK, Abdelwarith AM (2022) Alteration of gut microbiota in Alzheimer’s disease and their relation to the cognitive impairment. J Alzheimers Dis 88(3):1103–1114. https://doi.org/10.3233/JAD-220176

    Article  CAS  PubMed  Google Scholar 

  81. Taati Moghadam M, Amirmozafari N, Mojtahedi A, Bakhshayesh B, Shariati A, Masjedian Jazi F (2022) Association of perturbation of oral bacterial with incident of Alzheimer’s disease: a pilot study. J Clin Lab Anal 36(7). https://doi.org/10.1002/jcla.24483

  82. Scheperjans F, Aho V, Pereira PAB et al (2015) Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord 30(3):350–358. https://doi.org/10.1002/mds.26069

    Article  PubMed  Google Scholar 

  83. Keshavarzian A, Green SJ, Engen PA et al (2015) Colonic bacterial composition in Parkinson’s disease. Mov Disord 30(10):1351–1360. https://doi.org/10.1002/mds.26307

    Article  CAS  PubMed  Google Scholar 

  84. Lin A, Zheng W, He Y et al (2018) Gut microbiota in patients with Parkinson’s disease in southern China. Parkinsonism Relat Disord 53:82–88. https://doi.org/10.1016/j.parkreldis.2018.05.007

    Article  PubMed  Google Scholar 

  85. Li W, Wu X, Hu X et al (2017) Structural changes of gut microbiota in Parkinson’s disease and its correlation with clinical features. Sci China Life Sci 60(11):1223–1233. https://doi.org/10.1007/s11427-016-9001-4

    Article  PubMed  Google Scholar 

  86. Unger MM, Spiegel J, Dillmann KU et al (2016) Short chain fatty acids and gut microbiota differ between patients with Parkinson’s disease and age-matched controls. Parkinsonism Relat Disord 32:66–72. https://doi.org/10.1016/j.parkreldis.2016.08.019

    Article  PubMed  Google Scholar 

  87. Hasegawa S, Goto S, Tsuji H et al (2015) Intestinal dysbiosis and lowered serum lipopolysaccharide-binding protein in Parkinson’s disease. PLoS ONE 10(11):e0142164. https://doi.org/10.1371/journal.pone.0142164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bedarf JR, Hildebrand F, Coelho LP et al (2017) Functional implications of microbial and viral gut metagenome changes in early stage L-DOPA-naïve Parkinson's disease patients [published correction appears in Genome Med. 2017 Jun 29;9(1):61]. Genome Med 9(1):39. https://doi.org/10.1186/s13073-017-0428-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Petrov VA, Saltykova IV, Zhukova IA et al (2017) Analysis of gut microbiota in patients with Parkinson’s disease. Bull Exp Biol Med 162(6):734–737. https://doi.org/10.1007/s10517-017-3700-7

    Article  CAS  PubMed  Google Scholar 

  90. Hill-Burns EM, Debelius JW, Morton JT et al (2017) Parkinson’s disease and Parkinson’s disease medications have distinct signatures of the gut microbiome. Mov Disord 32(5):739–749. https://doi.org/10.1002/mds.26942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Barichella M, Severgnini M, Cilia R et al (2019) Unraveling gut microbiota in Parkinson’s disease and atypical parkinsonism. Mov Disord 34(3):396–405. https://doi.org/10.1002/mds.27581

    Article  PubMed  Google Scholar 

  92. Tetz G, Brown SM, Hao Y, Tetz V (2018) Parkinson’s disease and bacteriophages as its overlooked contributors. Sci Rep 8(1). https://doi.org/10.1038/s41598-018-29173-4

  93. Heintz-Buschart A, Pandey U, Wicke T et al (2018) The nasal and gut microbiome in Parkinson’s disease and idiopathic rapid eye movement sleep behavior disorder. Mov Disord 33(1):88–98. https://doi.org/10.1002/mds.27105

    Article  CAS  PubMed  Google Scholar 

  94. Johansson MEV, Phillipson M, Petersson J, Velcich A, Holm L, Hansson GC (2008) The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci U S A 105(39):15064–15069. https://doi.org/10.1073/pnas.0803124105

    Article  PubMed  PubMed Central  Google Scholar 

  95. Hollister EB, Gao C, Versalovic J (2014) Compositional and functional features of the gastrointestinal microbiome and their effects on human health. Gastroenterology 146(6):1449–1458. https://doi.org/10.1053/j.gastro.2014.01.052

    Article  PubMed  Google Scholar 

  96. Precup G, Vodnar DC (2019) Gut Prevotella as a possible biomarker of diet and its eubiotic versus dysbiotic roles: a comprehensive literature review. Br J Nutr 122(2):131–140. https://doi.org/10.1017/s0007114519000680

    Article  CAS  PubMed  Google Scholar 

  97. Hartstra AV, Schüppel V, Imangaliyev S et al (2020) Infusion of donor feces affects the gut–brain axis in humans with metabolic syndrome. Mol Metab 42(101076):101076. https://doi.org/10.1016/j.molmet.2020.101076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Threlfell S, Mohammadi AS, Ryan BJ et al (2021) Striatal dopamine transporter function is facilitated by converging biology of α-synuclein and cholesterol. Front Cell Neurosci 15:658244. https://doi.org/10.3389/fncel.2021.658244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Iyer V, Venkiteswaran K, Savaliya S et al (2021) The cross-hemispheric nigrostriatal pathway prevents the expression of levodopa-induced dyskinesias. Neurobiol Dis 159(105491):105491. https://doi.org/10.1016/j.nbd.2021.105491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cramb KML, Beccano-Kelly D, Cragg SJ, Wade-Martins R (2023) Impaired dopamine release in Parkinson’s disease. Brain 146(8):3117–3132. https://doi.org/10.1093/brain/awad064

    Article  PubMed  PubMed Central  Google Scholar 

  101. Murman D (2015) The impact of age on cognition. Semin Hear 36(03):111–121. https://doi.org/10.1055/s-0035-1555115

    Article  PubMed  PubMed Central  Google Scholar 

  102. Dinan TG, Stanton C, Cryan JF (2013) Psychobiotics: a novel class of psychotropic. Biol Psychiatry 74(10):720–726. https://doi.org/10.1016/j.biopsych.2013.05.001

    Article  CAS  PubMed  Google Scholar 

  103. Aljumaah MR, Bhatia U, Roach J, Gunstad J, Azcarate Peril MA (2022) The gut microbiome, mild cognitive impairment, and probiotics: a randomized clinical trial in middle-aged and older adults. Clin Nutr 41(11):2565–2576. https://doi.org/10.1016/j.clnu.2022.09.012

    Article  PubMed  Google Scholar 

  104. Kumar A (2018) Editorial: neuroinflammation and cognition. Front Aging Neurosci 10:413. https://doi.org/10.3389/fnagi.2018.00413

    Article  PubMed  PubMed Central  Google Scholar 

  105. Lo EH (2010) Degeneration and repair in central nervous system disease. Nat Med 16(11):1205–1209. https://doi.org/10.1038/nm.2226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Carabotti M, Scirocco A, Maselli MA, Severi C (2015) The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol 28(2):203–209

    PubMed  PubMed Central  Google Scholar 

  107. Chen Y, Xu J, Chen Y (2021) Regulation of neurotransmitters by the gut microbiota and effects on cognition in neurological disorders. Nutrients 13(6):2099. https://doi.org/10.3390/nu13062099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Xu Y, Yan J, Zhou P et al (2012) Neurotransmitter receptors and cognitive dysfunction in Alzheimer’s disease and Parkinson’s disease. Prog Neurobiol 97(1):1–13. https://doi.org/10.1016/j.pneurobio.2012.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Duan R, Hou J, Wang X et al (2023) Prevotella histicola transplantation ameliorates cognitive impairment and decreases oxidative stress in vascular dementia rats. Brain Sci 13(8):1136. https://doi.org/10.3390/brainsci13081136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Gąssowska-Dobrowolska M, Chlubek M, Kolasa A et al (2023) Microglia and astroglia—the potential role in neuroinflammation induced by pre- and neonatal exposure to lead (Pb). Int J Mol Sci 24(12):9903. https://doi.org/10.3390/ijms24129903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Song Q, Fan C, Wang P, Li Y, Yang M, Yu SY (2018) Hippocampal CA1 βCaMKII mediates neuroinflammatory responses via COX-2/PGE2 signaling pathways in depression. J Neuroinflammation 15(1):338. https://doi.org/10.1186/s12974-018-1377-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bathina S, Das UN (2015) Brain-derived neurotrophic factor and its clinical implications. Arch Med Sci 11(6):1164–1178. https://doi.org/10.5114/aoms.2015.56342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Huang F, Liu X, Xu S et al (2021) Prevotella histicola mitigated estrogen deficiency-induced depression via gut microbiota-dependent modulation of inflammation in ovariectomized mice. Front Nutr 8:805465. https://doi.org/10.3389/fnut.2021.805465

    Article  CAS  PubMed  Google Scholar 

  114. Montagnani M, Bottalico L, Potenza MA et al (2023) The crosstalk between gut microbiota and nervous system: a bidirectional interaction between microorganisms and metabolome. Int J Mol Sci 24(12):10322. https://doi.org/10.3390/ijms241210322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Dillon SM, Lee EJ, Kotter CV et al (2016) Gut dendritic cell activation links an altered colonic microbiome to mucosal and systemic T-cell activation in untreated HIV-1 infection. Mucosal Immunol 9(1):24–37. https://doi.org/10.1038/mi.2015.33

    Article  CAS  PubMed  Google Scholar 

  116. Geva-Zatorsky N, Sefik E, Kua L et al (2017) Mining the human gut microbiota for immunomodulatory organisms. Cell 168(5):928-943.e11. https://doi.org/10.1016/j.cell.2017.01.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ley RE (2016) Prevotella in the gut: choose carefully. Nat Rev Gastroenterol Hepatol 13(2):69–70. https://doi.org/10.1038/nrgastro.2016.4

    Article  CAS  PubMed  Google Scholar 

  118. Zhu A, Sunagawa S, Mende DR, Bork P (2015) Inter-individual differences in the gene content of human gut bacterial species. Genome Biol 16(1):82. https://doi.org/10.1186/s13059-015-0646-9

    Article  PubMed  PubMed Central  Google Scholar 

  119. De Vadder F, Kovatcheva-Datchary P, Zitoun C, Duchampt A, Bäckhed F, Mithieux G (2016) Microbiota-produced succinate improves glucose homeostasis via intestinal gluconeogenesis. Cell Metab 24(1):151–157. https://doi.org/10.1016/j.cmet.2016.06.013

    Article  CAS  PubMed  Google Scholar 

  120. Sandberg J, Kovatcheva-Datchary P, Björck I, Bäckhed F, Nilsson A (2019) Abundance of gut Prevotella at baseline and metabolic response to barley prebiotics. Eur J Nutr 58(6):2365–2376. https://doi.org/10.1007/s00394-018-1788-9

    Article  CAS  PubMed  Google Scholar 

  121. Chang CJ, Lin TL, Tsai YL et al (2019) Next generation probiotics in disease amelioration. J Food Drug Anal 27(3):615–622. https://doi.org/10.1016/j.jfda.2018.12.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Castillo-Álvarez F, Pérez-Matute P, Oteo JA, Marzo-Sola ME (2021) The influence of interferon β-1b on gut microbiota composition in patients with multiple sclerosis. Neurol (Engl Ed) 36(7):495–503. https://doi.org/10.1016/j.nrleng.2020.05.006

    Article  Google Scholar 

  123. Reynders T, Devolder L, Valles-Colomer M et al (2020) Gut microbiome variation is associated to multiple sclerosis phenotypic subtypes. Ann Clin Transl Neurol 7(4):406–419. https://doi.org/10.1002/acn3.51004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Single author.

Corresponding author

Correspondence to H Shafeeq Ahmed.

Ethics declarations

Ethics Approval and Consent to Participate

We confirm that we have read the Journal’s position on issues involved in ethical publication and affirm that this report is consistent with those guidelines.

Consent for Publication

Yes, single author.

Competing Interests

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, H.S. The Impact of Prevotella on Neurobiology in Aging: Deciphering Dendritic Cell Activity and Inflammatory Dynamics. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04156-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04156-x

Keywords

Navigation