Skip to main content

Advertisement

Log in

Polyphenols Targeting MAP Kinase Signaling Pathway in Neurological Diseases: Understanding Molecular Mechanisms and Therapeutic Targets

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Polyphenols are a class of secondary metabolic products found in plants that have been extensively studied for how well they regulate biological processes, such as the proliferation of cells, autophagy, and apoptosis. The mitogen-activated protein kinase (MAPK)-mediated signaling cascade is currently identified as a crucial pro-inflammatory pathway that plays a significant role in the development of neuroinflammation. This process has been shown to contribute to the pathogenesis of several neurological conditions, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), CNS damage, and cerebral ischemia. Getting enough polyphenols through eating habits has resulted in mitigating the effects of oxidative stress (OS) and lowering the susceptibility to associated neurodegenerative disorders, including but not limited to multiple sclerosis (MS), AD, stroke, and PD. Polyphenols possess significant promise in dealing with the root cause of neurological conditions by modulating multiple therapeutic targets simultaneously, thereby attenuating their complicated physiology. Several polyphenolic substances have demonstrated beneficial results in various studies and are presently undergoing clinical investigation to treat neurological diseases (NDs). The objective of this review is to provide a comprehensive summary of the different aspects of the MAPK pathway involved in neurological conditions, along with an appraisal of the progress made in using polyphenols to regulate the MAPK signaling system to facilitate the management of NDs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

Aβ:

Amyloid-β

AD:

Alzheimer’s disease

PD:

Parkinson’s disease

HD:

Huntington’s disease

MS:

Multiple sclerosis

αS:

α-Synuclein

PNS:

Peripheral nervous system

ROS:

Reactive oxygen species

CNS:

Central nervous system

NFTs:

Neurofibrillary tangles

NO:

Nitric oxide

ASD:

Autism spectrum disorder

ATF4:

Activating transcription factor 4

BDNF:

Brain-derived neurotrophic factor

BSA:

Bovine serum albumin

COX-2:

Cyclooxygenase-2

EGCG:

Epigallocatechin gallate

ERK:

Extracellular signal-regulated kinase

IL:

Interleukin

JNK:

c-Jun N-terminal kinase

LPS:

Lipopolysaccharide

MAPK:

Mitogen-activated protein kinase

MKP-1:

MAP kinase phosphatase 1

MMP-2:

Matrix metallopeptidase 2

MPTP:

Mitochondrial toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

NF-κB:

Nuclear factor kappa-B

NR:

Normal dongjin rice

OS:

Oxidative stress

OA:

Okadaic acid

PGE2:

Prostaglandin E2

RR:

Resveratrol-enriched rice

iNOS:

Inducible nitric oxide synthase

SN:

Substantia nigra

6-OHDA:

6-Hydroxydopamine

COMT:

Catechol-O-methyl transferase

AChE:

Acetylcholinesterase

SOD:

Superoxide dismutase

STAT3:

Signal transducer and activator of transcription 3

TLR4:

Toll-like receptor 4

TNF-α:

Tumor necrosis factor-α

References

  1. Marsili L, Marcucci S, LaPorta J et al (2023) Paraneoplastic neurological syndromes of the central nervous system: pathophysiology, diagnosis, and treatment. Biomedicines 11. https://doi.org/10.3390/biomedicines11051406

  2. Ebrahimi A, Schluesener H (2012) Natural polyphenols against neurodegenerative disorders: potentials and pitfalls. Ageing Res Rev 11:329–345

    Article  CAS  PubMed  Google Scholar 

  3. Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103:239–252. https://doi.org/10.1016/S0092-8674(00)00116-1

    Article  CAS  PubMed  Google Scholar 

  4. Geest CR, Coffer PJ (2009) MAPK signaling pathways in the regulation of hematopoiesis. J Leukoc Biol 86:237–250. https://doi.org/10.1189/jlb.0209097

    Article  CAS  PubMed  Google Scholar 

  5. Wagner EF, Nebreda ÁR (2009) Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer 9:537–549. https://doi.org/10.1038/nrc2694

    Article  CAS  PubMed  Google Scholar 

  6. Cuadrado A, Nebreda AR (2010) Mechanisms and functions of p38 MAPK signalling. Biochem J 429:403–417. https://doi.org/10.1042/BJ20100323

    Article  CAS  PubMed  Google Scholar 

  7. Li Z, Fang F, Wang Y, Wang L (2016) Resveratrol protects CA1 neurons against focal cerebral ischemic reperfusion-induced damage via the ERK-CREB signaling pathway in rats. Pharmacol Biochem Behav 146:21–27. https://doi.org/10.1016/j.pbb.2016.04.007

    Article  CAS  PubMed  Google Scholar 

  8. Moghbelinejad S, Nassiri-asl M, Naserpour T et al (2014) Rutin activates the MAPK pathway and BDNF gene expression on beta-amyloid induced neurotoxicity in rats. Toxicol Lett 224:108–113. https://doi.org/10.1016/j.toxlet.2013.10.010

    Article  CAS  PubMed  Google Scholar 

  9. Wang H, Wang H, Cheng H, Che Z (2016) Ameliorating effect of luteolin on memory impairment in an Alzheimer ’ s disease model:4215–4220. https://doi.org/10.3892/mmr.2016.5052

  10. Park SE, Sapkota K, Kim S et al (2011) Kaempferol acts through mitogen-activated protein kinases and protein kinase B/AKT to elicit protection in a model of neuroinflammation in BV2 microglial cells. 4. https://doi.org/10.1111/j.1476-5381.2011.01389.x

  11. Wu PS, Yen JH, Kou MC, Wu MJ (2015) Luteolin and apigenin attenuate 4-hydroxy-2-nonenal-mediated cell death through modulation of UPR, Nrf2-ARE and MAPK pathways in PC12 cells. PLoS One 10:1–23. https://doi.org/10.1371/journal.pone.0130599

    Article  CAS  Google Scholar 

  12. Muraleva NA, Stefanova NA, Kolosova NG (2020) SkQ1 suppresses the p38 MAPK signaling pathway involved in Alzheimer’s disease-like pathology in OXYS rats. Antioxidants 9:1–15. https://doi.org/10.3390/antiox9080676

    Article  CAS  Google Scholar 

  13. Kheiri G, Dolatshahi M, Rahmani F, Rezaei N (2019) Role of p38/MAPKs in Alzheimer’s disease: implications for amyloid beta toxicity targeted therapy. Rev Neurosci 30:9–30. https://doi.org/10.1515/revneuro-2018-0008

    Article  CAS  Google Scholar 

  14. Dehghani R, Rahmani F, Rezaei N (2018) MicroRNA in Alzheimer’s disease revisited: implications for major neuropathological mechanisms. Rev Neurosci 29:161–182. https://doi.org/10.1515/revneuro-2017-0042

    Article  CAS  PubMed  Google Scholar 

  15. Moghaddam HS, Zare-Shahabadi A, Rahmani F, Rezaei N (2017) Neurotransmission systems in Parkinson’s disease. Rev Neurosci 28:509–536. https://doi.org/10.1515/revneuro-2016-0068

    Article  Google Scholar 

  16. Wang Q, Zheng H, Zhang ZF, Zhang YX (2008) Ginsenoside Rg1 modulates COX-2 expression in the substantia nigra of mice with MPTP-induced Parkinson disease through the P38 signaling pathway. Nan Fang Yi Ke Da Xue Xue Bao 28:1594–1598

    CAS  PubMed  Google Scholar 

  17. Yu KR, Lee JY, Kim HS et al (2014) A p38 MAPK-mediated alteration of COX-2/PGE2 regulates immunomodulatory properties in human mesenchymal stem cell aging. PLoS One 9. https://doi.org/10.1371/journal.pone.0102426

  18. Du Y, Du Y, Zhang Y et al (2019) MKP-1 reduces aβ generation and alleviates cognitive impairments in Alzheimer’s disease models. Signal Transduct Target Ther 4. https://doi.org/10.1038/s41392-019-0091-4

  19. Ahmed T, Zulfiqar A, Arguelles S et al (2020) Map kinase signaling as therapeutic target for neurodegeneration. Pharmacol Res 160. https://doi.org/10.1016/j.phrs.2020.105090

  20. Wen Y, Alshikho MJ, Herbert MR (2016) Pathway network analyses for autism reveal multisystem involvement, major overlaps with other diseases and convergence upon MAPK and calcium signaling. PLoS One 11. https://doi.org/10.1371/journal.pone.0153329

  21. Albert-Gascó H, Ros-Bernal F, Castillo-Gómez E, Olucha-Bordonau FE (2020) Map/erk signaling in developing cognitive and emotional function and its effect on pathological and neurodegenerative processes. Int J Mol Sci 21:1–29. https://doi.org/10.3390/ijms21124471

    Article  CAS  Google Scholar 

  22. Kim EK, Choi EJ (2010) Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta Mol basis Dis 1802:396–405. https://doi.org/10.1016/j.bbadis.2009.12.009

    Article  CAS  Google Scholar 

  23. Vithayathil J, Pucilowska J, Friel D, Landreth GE (2017) Chronic impairment of ERK signaling in glutamatergic neurons of the forebrain does not affect spatial memory retention and LTP in the same manner as acute blockade of the ERK pathway. Hippocampus 27:1239–1249. https://doi.org/10.1002/hipo.22769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Serra D, Almeida LM, Dinis TCP (2018) Dietary polyphenols: a novel strategy to modulate microbiota-gut-brain axis. Trends Food Sci Technol 78:224–233. https://doi.org/10.1016/j.tifs.2018.06.007

    Article  CAS  Google Scholar 

  25. Cory H, Passarelli S, Szeto J et al (2018) The role of polyphenols in human health and food systems: a mini-review. Front Nutr 5. https://doi.org/10.3389/fnut.2018.00087

  26. Dhakal S, Kushairi N, Phan CW et al (2019) Dietary polyphenols: a multifactorial strategy to target alzheimer’s disease. Int J Mol Sci 20:1–40. https://doi.org/10.3390/ijms20205090

    Article  CAS  Google Scholar 

  27. Moussa C, Hebron M, Huang X et al (2017) Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer’s disease. J Neuroinflammation 14. https://doi.org/10.1186/s12974-016-0779-0

  28. Dai XJ, Li N, Yu L et al (2015) Activation of BV2 microglia by lipopolysaccharide triggers an inflammatory reaction in PC12 cell apoptosis through a toll-like receptor 4-dependent pathway. Cell Stress Chaperon 20:321–331. https://doi.org/10.1007/s12192-014-0552-1

    Article  CAS  Google Scholar 

  29. Subedi L, Kwon OW, Pak C et al (2017) N,N-disubstituted azines attenuate LPS-mediated neuroinflammation in microglia and neuronal apoptosis via inhibiting MAPK signaling pathways. BMC Neurosci 18. https://doi.org/10.1186/s12868-017-0399-3

  30. Subedi L, Venkatesan R, Kim SY (2017) Neuroprotective and anti-inflammatory activities of allyl isothiocyanate through attenuation of JNK/NF-κB/TNF-α signaling. Int J Mol Sci 18. https://doi.org/10.3390/ijms18071423

  31. He W, Zhang MF, Ye J et al (2010) Cordycepin induces apoptosis by enhancing JNK and p38 kinase activity and increasing the protein expression of Bcl-2 pro-apoptotic molecules. J Zhejiang Univ Sci B 11:654–660. https://doi.org/10.1631/jzus.B1000081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Subedi L, Baek SH, Kim SY (2018) Genetically engineered resveratrol-enriched rice inhibits neuroinflammation in lipopolysaccharide-activated BV2 microglia via downregulating mitogen-activated protein kinase-nuclear factor kappa B signaling pathway. Oxidative Med Cell Longev 2018. https://doi.org/10.1155/2018/8092713

  33. Hou Y, Zhang Y, Mi Y et al (2019) A novel quinolyl-substituted analogue of resveratrol inhibits LPS-induced inflammatory responses in microglial cells by blocking the NF-κB/MAPK signaling pathways. Mol Nutr Food Res 63. https://doi.org/10.1002/mnfr.201801380

  34. Zhang L, Fang Y, Xu Y et al (2015) Curcumin improves amyloid β-peptide (1-42) induced spatial memory deficits through BDNF-ERK signaling pathway. PLoS One 10. https://doi.org/10.1371/journal.pone.0131525

  35. Shi X, Zheng Z, Li J et al (2015) Curcumin inhibits Aβ-induced microglial inflammatory responses in vitro: involvement of ERK1/2 and p38 signaling pathways. Neurosci Lett 594:105–110. https://doi.org/10.1016/j.neulet.2015.03.045

    Article  CAS  PubMed  Google Scholar 

  36. SoukhakLari R, Moezi L, Pirsalami F, Moosavi M (2018) The effect of BSA-based curcumin nanoparticles on memory and hippocampal MMP-2, MMP-9, and MAPKs in adult mice. J Mol Neurosci 65:319–326. https://doi.org/10.1007/s12031-018-1104-4

    Article  CAS  PubMed  Google Scholar 

  37. Panzarini E, Mariano S, Tacconi S et al (2021) Novel therapeutic delivery of nanocurcumin in central nervous system related disorders. Nanomaterials 11:1–30. https://doi.org/10.3390/nano11010002

    Article  CAS  Google Scholar 

  38. Che DN, Cho BO, Kim J et al (2020) Luteolin and apigenin attenuate LPS-induced astrocyte activation and cytokine production by targeting MAPK, STAT3, and NF-κB signaling pathways. Inflammation 43:1716–1728. https://doi.org/10.1007/s10753-020-01245-6

    Article  CAS  PubMed  Google Scholar 

  39. Zhu L, Bi W, Lu D et al (2014) Luteolin inhibits SH-SY5Y cell apoptosis through suppression of the nuclear transcription factor-κB, mitogen-activated protein kinase and protein kinase B pathways in lipopolysaccharide-stimulated cocultured BV2 cells. Exp Ther Med 7:1065–1070. https://doi.org/10.3892/etm.2014.1564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang JX, Xing JG, Wang LL et al (2017) Luteolin inhibits fibrillary β-amyloid1-40 -induced inflammation in a human blood-brain barrier mode by suppressing the p38 MAPK-mediated NF-eκB signaling pathways. Molecules 22. https://doi.org/10.3390/molecules22030334

  41. Wang X, Wu J, Ma S et al (2020) Resveratrol preincubation enhances the therapeutic efficacy of hUC-MSCs by improving cell migration and modulating neuroinflammation mediated by MAPK signaling in a mouse model of Alzheimer’s disease. Front Cell Neurosci 14:1–13. https://doi.org/10.3389/fncel.2020.00062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Luccarini I, Pantano D, Nardiello P et al (2016) The polyphenol oleuropein aglycone modulates the PARP1-SIRT1 interplay: an in vitro and in vivo study. J Alzheimers Dis 54:737–750. https://doi.org/10.3233/JAD-160471

    Article  CAS  PubMed  Google Scholar 

  43. Jin M, Park SY, Shen Q et al (2018) Anti-neuroinflammatory effect of curcumin on Pam3CSK4-stimulated microglial cells. Int J Mol Med 41:521–530. https://doi.org/10.3892/ijmm.2017.3217

    Article  CAS  PubMed  Google Scholar 

  44. Liu R, Li J, Song J et al (2014) Pinocembrin improves cognition and protects the neurovascular unit in Alzheimer related deficits. Neurobiol Aging 35:1275–1285. https://doi.org/10.1016/j.neurobiolaging.2013.12.031

    Article  CAS  PubMed  Google Scholar 

  45. Liu R, Li J, Song J et al (2014) Cells against fibrillar amyloid-1−40 injury by suppressing the MAPK/NF-B inflammatory pathways. Biomed Res Int 2014:1–14

    CAS  Google Scholar 

  46. Cho ES, Jang YJ, Hwang MK et al (2009) Attenuation of oxidative neuronal cell death by coffee phenolic phytochemicals. Mutat Res Fundam Mol Mech Mutagen 661:18–24. https://doi.org/10.1016/j.mrfmmm.2008.10.021

    Article  CAS  Google Scholar 

  47. Zhu L, Bi W, Lu D et al (2014) Luteolin inhibits SH-SY5Y cell apoptosis through suppression of the nuclear transcription factor-κB, mitogen-activated protein kinase and protein kinase B pathways in lipopolysaccharide-stimulated cocultured BV2 cells:1065–1070. https://doi.org/10.3892/etm.2014.1564

  48. Jiang W, Luo T, Li S et al (2016) Quercetin protects against okadaic acid-induced injury via MAPK and PI3K/Akt/GSK3 β signaling pathways in HT22 hippocampal neurons:1–18. https://doi.org/10.1371/journal.pone.0152371

  49. Ji Y, Han J, Lee N et al (2020) Neuroprotective effects of baicalein, wogonin, and oroxylin A on amyloid beta-induced toxicity via NF-κB/MAPK pathway modulation. Molecules 25. https://doi.org/10.3390/molecules25215087

  50. Lee JW, Lee YK, Ban JO et al (2009) Green tea (-)-epigallocatechin-3-gallate inhibits β-amyloid-induced cognitive dysfunction through modification of secretase activity via inhibition of ERK and NF-κB pathways in mice. J Nutr 139:1987–1993. https://doi.org/10.3945/jn.109.109785

    Article  CAS  PubMed  Google Scholar 

  51. Lee E, Park HR, Ji ST et al (2014) Baicalein attenuates astroglial activation in the 1-methyl-4-phenyl-1,2,3,4-tetrahydropyridine-induced Parkinson’s disease model by downregulating the activations of nuclear factor-κB, ERK, and JNK. J Neurosci Res 92:130–139. https://doi.org/10.1002/jnr.23307

    Article  CAS  PubMed  Google Scholar 

  52. Singh SS, Rai SN, Birla H et al (2020) Neuroprotective effect of chlorogenic acid on mitochondrial dysfunction-mediated apoptotic death of da neurons in a parkinsonian mouse model. Oxidative Med Cell Longev 2020. https://doi.org/10.1155/2020/6571484

  53. Hou Y, Li N, Xie G et al (2015) Pterostilbene exerts anti-neuroinflammatory effect on lipopolysaccharide-activated microglia via inhibition of MAPK signalling pathways. J Funct Foods 19:676–687. https://doi.org/10.1016/j.jff.2015.10.002

    Article  CAS  Google Scholar 

  54. Lee Y, Chun HJ, Lee KM et al (2015) Silibinin suppresses astroglial activation in a mouse model of acute Parkinson’s disease by modulating the ERK and JNK signaling pathways. Brain Res 1627:233–242. https://doi.org/10.1016/j.brainres.2015.09.029

    Article  CAS  PubMed  Google Scholar 

  55. Park SE, Sapkota K, Choi JH et al (2014) Rutin from dendropanax morbifera leveille protects human dopaminergic cells against rotenone induced cell injury through inhibiting JNK and p38 MAPK signaling. Neurochem Res 39:707–718. https://doi.org/10.1007/s11064-014-1259-5

    Article  CAS  PubMed  Google Scholar 

  56. Chen WF, Wu L, Du ZR et al (2017) Neuroprotective properties of icariin in MPTP-induced mouse model of Parkinson’s disease: involvement of PI3K/Akt and MEK/ERK signaling pathways. Phytomedicine 25:93–99. https://doi.org/10.1016/j.phymed.2016.12.017

    Article  CAS  PubMed  Google Scholar 

  57. Li X, Zhang J, Rong H et al (2020) Ferulic acid ameliorates MPP+/MPTP-induced oxidative stress via ERK1/2-dependent Nrf2 activation: translational implications for Parkinson disease treatment. Mol Neurobiol 57:2981–2995. https://doi.org/10.1007/s12035-020-01934-1

    Article  CAS  PubMed  Google Scholar 

  58. Shu Z, Yang B, Zhao H et al (2014) Tangeretin exerts anti-neuroinflammatory effects via NF-κB modulation in lipopolysaccharide-stimulated microglial cells. Int Immunopharmacol 19:275–282. https://doi.org/10.1016/j.intimp.2014.01.011

    Article  CAS  PubMed  Google Scholar 

  59. Velagapudi R, Aderogba M, Olajide OA (2014) Tiliroside, a dietary glycosidic flavonoid, inhibits TRAF-6/NF-κB/p38-mediated neuroinflammation in activated BV2 microglia. Biochim Biophys Acta, Gen Subj 1840:3311–3319. https://doi.org/10.1016/j.bbagen.2014.08.008

    Article  CAS  Google Scholar 

  60. Wu CR, Tsai CW, Chang SW et al (2015) Carnosic acid protects against 6-hydroxydopamine-induced neurotoxicity in in vivo and in vitro model of Parkinson’s disease: involvement of antioxidative enzymes induction. Chem Biol Interact 225:40–46. https://doi.org/10.1016/j.cbi.2014.11.011

    Article  CAS  PubMed  Google Scholar 

  61. Lu X, Ma L, Ruan L et al (2010) Resveratrol differentially modulates inflammatory responses of microglia and astrocytes. J Neuroinflammation 7. https://doi.org/10.1186/1742-2094-7-46

  62. Che DN, Cho BO, Kim J et al (2020) Luteolin and apigenin attenuate LPS-induced astrocyte activation and cytokine production by targeting MAPK, STAT3, and NF-κB signaling pathways. https://doi.org/10.1007/s10753-020-01245-6

  63. Zhang K, Ma Z, Wang J et al (2011) Myricetin attenuated MPPþ-induced cytotoxicity by anti-oxidation and inhibition of MKK4 and JNK activation in MES23.5 cells. Neuropharmacology 61:329–335. https://doi.org/10.1016/j.neuropharm.2011.04.021

    Article  CAS  PubMed  Google Scholar 

  64. Huang B, Liu J, Ma D et al (2018) Myricetin prevents dopaminergic neurons from undergoing neuroinflammation-mediated degeneration in a lipopolysaccharide-induced Parkinson’s disease model. J Funct Foods 45:452–461. https://doi.org/10.1016/j.jff.2018.04.018

    Article  CAS  Google Scholar 

  65. Qian Y, Cao L, Guan T et al (2015) Protection by genistein on cortical neurons against oxidative stress injury via inhibition of NF-kappaB, JNK and ERK signaling pathway. Pharm Biol 53:1124–1132. https://doi.org/10.3109/13880209.2014.962057

    Article  CAS  PubMed  Google Scholar 

  66. Dong HJ, Shang CZ, Peng DW et al (2014) Curcumin attenuates ischemia-like injury induced IL-1β elevation in brain microvascular endothelial cells via inhibiting MAPK pathways and nuclear factor-κB activation. Neurol Sci 35:1387–1392. https://doi.org/10.1007/s10072-014-1718-4

    Article  PubMed  Google Scholar 

  67. Huang L, Chen C, Zhang X et al (2018) Neuroprotective effect of curcumin against cerebral ischemia-reperfusion via mediating autophagy and inflammation. J Mol Neurosci 64:129–139. https://doi.org/10.1007/s12031-017-1006-x

    Article  CAS  PubMed  Google Scholar 

  68. Lu Z, Liu Y, Shi Y et al (2018) Biochemical and biophysical research communications curcumin protects cortical neurons against oxygen and glucose deprivation/reoxygenation injury through flotillin-1 and extracellular signal-regulated kinase1/2 pathway. Biochem Biophys Res Commun:1–8. https://doi.org/10.1016/j.bbrc.2018.01.089

  69. Li Y, He D, Zhang X et al (2012) Protective effect of celastrol in rat cerebral ischemia model: down-regulating p-JNK, p-c-Jun and NF-κB. Brain Res 1464:8–13. https://doi.org/10.1016/j.brainres.2012.04.054

    Article  CAS  PubMed  Google Scholar 

  70. Simão F, Matté A, Pagnussat AS et al (2012) Resveratrol preconditioning modulates inflammatory response in the rat hippocampus following global cerebral ischemia. Neurochem Int 61:659–665. https://doi.org/10.1016/j.neuint.2012.06.009

    Article  CAS  PubMed  Google Scholar 

  71. Zamin LL, Dillenburg-Pilla P, Argenta-Comiran R et al (2006) Protective effect of resveratrol against oxygen-glucose deprivation in organotypic hippocampal slice cultures: involvement of PI3-K pathway. Neurobiol Dis 24:170–182. https://doi.org/10.1016/j.nbd.2006.06.002

    Article  CAS  PubMed  Google Scholar 

  72. Che DN, Cho BO, Kim JS et al (2020) Effect of luteolin and apigenin on the production of IL-31 and IL-33 in lipopolysaccharides-activated microglia cells and their mechanism of action. Nutrients 12. https://doi.org/10.3390/nu12030811

  73. Choi AY, Choi JH, Lee JY et al (2010) Apigenin protects HT22 murine hippocampal neuronal cells against endoplasmic reticulum stress-induced apoptosis. Neurochem Int 57:143–152. https://doi.org/10.1016/j.neuint.2010.05.006

    Article  CAS  PubMed  Google Scholar 

  74. Sivanantham B, Krishnan UM, Rajendiran V (2018) Amelioration of oxidative stress in differentiated neuronal cells by rutin regulated by a concentration switch. Biomed Pharmacother 108:15–26. https://doi.org/10.1016/j.biopha.2018.09.021

    Article  CAS  PubMed  Google Scholar 

  75. Zhang B, Wei YZ, Wang GQ et al (2019) Targeting MAPK pathways by naringenin modulates microglia M1/M2 polarization in lipopolysaccharide-stimulated cultures. Front Cell Neurosci 12. https://doi.org/10.3389/fncel.2018.00531

  76. Wang Y, Zhen Y, Wu X et al (2015) Vitexin protects brain against ischemia/reperfusion injury via modulating mitogen-activated protein kinase and apoptosis signaling in mice. Phytomedicine 22:379–384. https://doi.org/10.1016/j.phymed.2015.01.009

    Article  CAS  PubMed  Google Scholar 

  77. Chen HL, Jia WJ, Li HE et al (2020) Scutellarin exerts anti-inflammatory effects in activated microglia/brain macrophage in cerebral ischemia and in activated BV-2 microglia through regulation of MAPKs signaling pathway. NeuroMolecular Med 22:264–277. https://doi.org/10.1007/s12017-019-08582-2

    Article  CAS  PubMed  Google Scholar 

  78. Mehta R, Bhandari R, Kuhad A (2021) Effects of catechin on a rodent model of autism spectrum disorder: implications for the role of nitric oxide in neuroinflammatory pathway. Psychopharmacology 238:3249–3271. https://doi.org/10.1007/s00213-021-05941-5

    Article  CAS  PubMed  Google Scholar 

  79. Keun S, Moon E, Yeou S (2010) Neuroscience Letters Chrysin suppresses LPS-stimulated proinflammatory responses by blocking NF-κB and JNK activations in microglia cells. Neurosci Lett 485:143–147. https://doi.org/10.1016/j.neulet.2010.08.064

    Article  CAS  Google Scholar 

  80. Zhang Q, Yuan L, Zhang Q et al (2015) Resveratrol attenuates hypoxia-induced neurotoxicity through inhibiting microglial activation. Int Immunopharmacol 28:578–587. https://doi.org/10.1016/j.intimp.2015.07.027

    Article  CAS  PubMed  Google Scholar 

  81. Bi XL, Yang JY, Dong YX et al (2005) Resveratrol inhibits nitric oxide and TNF-α production by lipopolysaccharide-activated microglia. Int Immunopharmacol 5:185–193. https://doi.org/10.1016/j.intimp.2004.08.008

    Article  CAS  PubMed  Google Scholar 

  82. Zhong LM, Zong Y, Sun L et al (2012) Resveratrol inhibits inflammatory responses via the mammalian target of rapamycin signaling pathway in cultured LPS-stimulated microglial cells. PLoS One 7. https://doi.org/10.1371/journal.pone.0032195

  83. Dragone T, Cianciulli A, Calvello R et al (2014) Resveratrol counteracts lipopolysaccharide-mediated microglial inflammation by modulating a SOCS-1 dependent signaling pathway. Toxicol in Vitro 28:1126–1135. https://doi.org/10.1016/j.tiv.2014.05.005

    Article  CAS  PubMed  Google Scholar 

  84. Jing YH, Chen KH, Kuo PC et al (2013) Neurodegeneration in streptozotocin-induced diabetic rats is attenuated by treatment with resveratrol. Neuroendocrinology 98:116–127. https://doi.org/10.1159/000350435

    Article  CAS  PubMed  Google Scholar 

  85. Anjum J, Mitra S, Das R et al (2022) A renewed concept on the MAPK signaling pathway in cancers: Polyphenols as a choice of therapeutics. Pharmacol Res 184:106398. https://doi.org/10.1016/j.phrs.2022.106398

  86. Zhang L, Wu C, Zhao S et al (2010) Demethoxycurcumin, a natural derivative of curcumin attenuates LPS-induced pro-inflammatory responses through down-regulation of intracellular ROS-related MAPK/NF-κB signaling pathways in N9 microglia induced by lipopolysaccharide. Int Immunopharmacol 10:331–338. https://doi.org/10.1016/j.intimp.2009.12.004

    Article  CAS  PubMed  Google Scholar 

  87. Lin TY, Lu CW, Huang SK, Wang SJ (2012) Curcumin inhibits glutamate release from rat prefrontal nerve endings by affecting vesicle mobilization. Int J Mol Sci 13:9097–9109. https://doi.org/10.3390/ijms13079097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Seongman HW, Kwon KS (2007) Curcumin attenuates glutamate-induced HT22 cell death by suppressing MAP kinase signaling:187–194. https://doi.org/10.1007/s11010-006-9365-6

  89. Wang R, Li Y, Xu Y et al (2010) Progress in neuro-psychopharmacology & biological psychiatry curcumin produces neuroprotective effects via activating brain-derived neurotrophic factor/TrkB-dependent MAPK and PI-3K cascades in rodent cortical neurons. Prog Neuropsychopharmacol Biol Psychiatry 34:147–153. https://doi.org/10.1016/j.pnpbp.2009.10.016

    Article  CAS  PubMed  Google Scholar 

  90. Wang B, Li W, Jin H et al (2018) Respiratory physiology & neurobiology curcumin attenuates chronic intermittent hypoxia-induced brain injuries by inhibiting AQP4 and p38 MAPK pathway. Respir Physiol Neurobiol 255:50–57. https://doi.org/10.1016/j.resp.2018.05.006

    Article  CAS  PubMed  Google Scholar 

  91. Kim M, Jung J, Jeong NY, Chung HJ (2019) The natural plant flavonoid apigenin is a strong antioxidant that effectively delays peripheral neurodegenerative processes. Anat Sci Int 94:285–294. https://doi.org/10.1007/s12565-019-00486-2

    Article  CAS  PubMed  Google Scholar 

  92. Singh A, Upadhayay S, Mehan S (2021) Inhibition of c-JNK/p38MAPK signaling pathway by apigenin prevents neurobehavioral and neurochemical defects in ethidium bromide-induced experimental model of multiple sclerosis in rats: evidence from CSF, blood plasma and brain samples. Phytomedicine Plus 1:100139. https://doi.org/10.1016/j.phyplu.2021.100139

    Article  Google Scholar 

  93. Li Z, Ya K, Xiao-Mei W et al (2008) Ginkgolides protect PC12 cells against hypoxia-induced injury by p42/p44 MAPK pathway-dependent upregulation of HIF-1α expression and HIF-1 DNA-binding activity. J Cell Biochem 103:564–575. https://doi.org/10.1002/jcb.21427

    Article  CAS  PubMed  Google Scholar 

  94. Su P, Zhang J, Wang S et al (2016) Genistein alleviates lead-induced neurotoxicity in vitro and in vivo: involvement of multiple signaling pathways. Neurotoxicology 53:153–164. https://doi.org/10.1016/j.neuro.2015.12.019

    Article  CAS  PubMed  Google Scholar 

  95. Li W, Li DY, Zhao SM et al (2017) Rutin attenuates isoflurane-induced neuroapoptosis via modulating JNK and p38 MAPK pathways in the hippocampi of neonatal rats:2056–2064. https://doi.org/10.3892/etm.2017.4173

  96. Abdel-aleem GA, Khaleel EF (2017) Rutin hydrate ameliorates cadmium chloride-induced spatial memory loss and neural apoptosis in rats by enhancing levels of acetylcholine, inhibiting JNK and ERK1/2 activation and activating mTOR signalling. Arch Physiol Biochem 0:1–11. https://doi.org/10.1080/13813455.2017.1411370

    Article  CAS  Google Scholar 

  97. Wang R, Sun Y, Huang H et al (2015) Rutin, a natural flavonoid protects PC12 cells against sodium nitroprusside-induced neurotoxicity through activating PI3K/Akt/mTOR and ERK1/2 pathway. Neurochem Res 40:1945–1953. https://doi.org/10.1007/s11064-015-1690-2

    Article  CAS  PubMed  Google Scholar 

  98. Bristy TA, Barua N, Tareq AM et al (2020) Deciphering the pharmacological properties of methanol extract of Psychotria calocarpa leaves by in vivo, in vitro and in silico approaches. Pharmaceuticals 13:183. https://doi.org/10.3390/ph13080183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Han Y, Su J, Liu X et al (2016) Naringin alleviates early brain injury after experimental subarachnoid hemorrhage by reducing oxidative stress and inhibiting apoptosis. Brain Res Bull. https://doi.org/10.1016/j.brainresbull.2016.12.008

  100. Jiang W, Luo T, Li S et al (2016) Quercetin protects against okadaic acid-induced injury via MAPK and PI3K/Akt/GSK3β signaling pathways in HT22 hippocampal neurons. PLoS One 11. https://doi.org/10.1371/journal.pone.0152371

  101. Caruana M, Vassallo N (2015) Tea polyphenols in Parkinson’s disease. Adv Exp Med Biol 863:117–137. https://doi.org/10.1007/978-3-319-18365-7_6

    Article  CAS  PubMed  Google Scholar 

  102. Pandareesh MD, Mythri RB, Srinivas Bharath MM (2015) Bioavailability of dietary polyphenols: factors contributing to their clinical application in CNS diseases. Elsevier Ltd

    Google Scholar 

  103. Wang J, Song Y, Gao M et al (2016) Neuroprotective effect of several phytochemicals and its potential application in the prevention of neurodegenerative diseases. Geriatrics 1:1–12. https://doi.org/10.3390/geriatrics1040029

    Article  Google Scholar 

  104. Elumalai P, Lakshmi S (2016) Role of quercetin benefits in neurodegeneration. In: The benefits of natural products for neurodegenerative diseases. Springer, pp. 229–245

    Chapter  Google Scholar 

  105. Kujawska M, Jodynis-Liebert J (2018) Polyphenols in Parkinson’s disease: a systematic review of in vivo studies. Nutrients 10. https://doi.org/10.3390/nu10050642

  106. Islam F, Islam MM, Meem AFK et al (2022) Multifaceted role of polyphenols in the treatment and management of neurodegenerative diseases. Chemosphere 307:136020. https://doi.org/10.1016/j.chemosphere.2022.136020

    Article  CAS  PubMed  Google Scholar 

  107. Singh A, Tripathi P, Yadawa AK, Singh S (2020) Promising polyphenols in Parkinson’s disease therapeutics. Neurochem Res 45:1731–1745. https://doi.org/10.1007/s11064-020-03058-3

    Article  CAS  PubMed  Google Scholar 

  108. Li Y, Zhao J, Hölscher C (2017) Therapeutic potential of baicalein in Alzheimer’s disease and Parkinson’s disease. CNS Drugs 31:639–652. https://doi.org/10.1007/s40263-017-0451-y

    Article  CAS  PubMed  Google Scholar 

  109. Bagheri H, Ghasemi F, Barreto GE et al (2020) Effects of curcumin on mitochondria in neurodegenerative diseases. BioFactors 46:5–20. https://doi.org/10.1002/biof.1566

    Article  CAS  PubMed  Google Scholar 

  110. Yang S, Wang H, Yang Y et al (2019) Baicalein administered in the subacute phase ameliorates ischemia-reperfusion-induced brain injury by reducing neuroinflammation and neuronal damage. Biomed Pharmacother 117:109102. https://doi.org/10.1016/j.biopha.2019.109102

    Article  CAS  PubMed  Google Scholar 

  111. Vithayathil J, Pucilowska J, Landreth GE (2018) ERK/MAPK signaling and autism spectrum disorders. Prog Brain Res 241:63–112. https://doi.org/10.1016/bs.pbr.2018.09.008

    Article  PubMed  Google Scholar 

  112. Levitt P, Campbell DB (2009) The genetic and neurobiologic compass points toward common signaling dysfunctions in autism spectrum disorders. J Clin Invest 119:747–754. https://doi.org/10.1172/JCI37934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Albert-Gascó H, Ros-Bernal F, Castillo-Gómez E, Olucha-Bordonau F (2020) MAP/ERK signaling in developing cognitive and emotional function and its effect on pathological and neurodegenerative processes. https://doi.org/10.3390/ijms21124471

  114. Bateup HS, Takasaki KT, Saulnier JL et al (2011) Loss of Tsc1 in vivo impairs hippocampal mGluR-LTD and increases excitatory synaptic function. J Neurosci 31:8862–8869. https://doi.org/10.1523/JNEUROSCI.1617-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zoghbi HY, Bear MF (2012) Synaptic dysfunction in neurodevelopmental disorders associated with autism and intellectual disabilities. Cold Spring Harb Perspect Biol 4. https://doi.org/10.1101/cshperspect.a009886

  116. Seese RR, Maske AR, Lynch G, Gall CM (2014) Long-term memory deficits are associated with elevated synaptic ERK1/2 activation and reversed by mGluR5 antagonism in an animal model of autism. Neuropsychopharmacology 39:1664–1673. https://doi.org/10.1038/npp.2014.13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yufune S, Satoh Y, Takamatsu I et al (2015) Transient blockade of ERK phosphorylation in the critical period causes autistic phenotypes as an adult in mice. Sci Rep 5. https://doi.org/10.1038/srep10252

  118. Subramanian M, Timmerman CK, Schwartz JL et al (2015) Characterizing autism spectrum disorders by key biochemical pathways. Front Neurosci 9. https://doi.org/10.3389/fnins.2015.00313

  119. Nicolini C, Fahnestock M (2018) The valproic acid-induced rodent model of autism. Exp Neurol 299:217–227. https://doi.org/10.1016/j.expneurol.2017.04.017

    Article  CAS  PubMed  Google Scholar 

  120. Shayganfard M (2020) Molecular and biological functions of resveratrol in psychiatric disorders: a review of recent evidence. Cell Biosci 10. https://doi.org/10.1186/s13578-020-00491-3

  121. Urdaneta KE, Castillo MA, Montiel N et al (2018) Autism spectrum disorders: potential neuro-psychopharmacotherapeutic plant-based drugs. Assay Drug Dev Technol 16:433–444. https://doi.org/10.1089/adt.2018.848

    Article  CAS  PubMed  Google Scholar 

  122. Lopez MS, Dempsey RJ, Vemuganti R (2015) Resveratrol neuroprotection in stroke and traumatic CNS injury. Neurochem Int 89:75–82. https://doi.org/10.1016/j.neuint.2015.08.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Li W, Li DY, Zhao SM et al (2017) Rutin attenuates isoflurane-induced neuroapoptosis via modulating JNK and p38 MAPK pathways in the hippocampi of neonatal rats. Exp Ther Med 13:2056–2064. https://doi.org/10.3892/etm.2017.4173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Abdel-Aleem GA, Khaleel EF (2018) Rutin hydrate ameliorates cadmium chloride-induced spatial memory loss and neural apoptosis in rats by enhancing levels of acetylcholine, inhibiting JNK and ERK1/2 activation and activating mTOR signalling. Arch Physiol Biochem 124:367–377. https://doi.org/10.1080/13813455.2017.1411370

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors express their gratitude to the Deanship of Scientific Research at King Khalid University for funding this work through the Large Research Group Project under grant number RGP.02/339/44.

Author information

Authors and Affiliations

Authors

Contributions

FI: conceptualization; data curation; formal analysis; investigation; methodology; resources; software; supervision; visualization; roles/writing—original draft; writing—review and editing. SR: data curation; investigation; methodology; resources; software; roles/writing—original draft; writing—review and editing. MZ: data curation; investigation; methodology; resources; software; roles/writing—original draft; writing—review and editing; supervision. SPa: data curation; investigation; methodology; resources; software; roles/writing—original draft; writing—review and editing. HS: data curation; investigation; methodology; resources; software; roles/writing—original draft; writing—review and editing. LY: formal analysis; investigation; validation; visualization; roles/writing—review and editing. BRK: formal analysis; investigation; validation; visualization; roles/writing—review and editing. LKD: formal analysis; investigation; validation; visualization; roles/writing—review and editing. SPr: formal analysis; investigation; validation; visualization; roles/writing—review and editing. FN: formal analysis; investigation; validation; visualization; roles/writing—review and editing. SOR: formal analysis; investigation; validation; visualization; roles/writing—review and editing. KD: formal analysis; investigation; validation; visualization; roles/writing—review and editing. TBE: conceptualization; formal analysis; funding acquisition; investigation; methodology; project administration; supervision; validation; visualization; writing—review and editing.

Corresponding authors

Correspondence to Mehrukh Zehravi or Talha Bin Emran.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, F., Roy, S., Zehravi, M. et al. Polyphenols Targeting MAP Kinase Signaling Pathway in Neurological Diseases: Understanding Molecular Mechanisms and Therapeutic Targets. Mol Neurobiol 61, 2686–2706 (2024). https://doi.org/10.1007/s12035-023-03706-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03706-z

Keywords

Navigation