Skip to main content

Advertisement

Log in

Electroacupuncture Inhibits Neuroinflammation Induced by Astrocytic Necroptosis Through RIP1/MLKL/TLR4 Pathway in a Mouse Model of Spinal Cord Injury

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Astrocytic necroptosis plays an essential role in the progression and regression of neurological disorders, which contributes to the neuroinflammation and disrupts neuronal regeneration and remyelination of severed axons. Electroacupuncture (EA), an effective therapeutic efficacy against spinal cord injury (SCI), has been proved to reduce neuronal cell apoptosis, inhibit inflammation, and prompt neural stem cell proliferation and differentiations. However, there have been few reports on whether EA regulate astrocytic necroptosis in SCI model. To investigate the effects of EA on astrocytic necroptosis and the mechanisms involved in the inhibition of astrocytic necroptosis after SCI in mice by EA, 8-week-old female C57BL/6 mice were subjected to SCI surgery and randomly divided into EA and SCI groups. Mice receiving sham surgery were included as sham group. “Jiaji” was selected as points for EA treatment, 10 min/day for 14 days. The in vitro data revealed that EA treatment significantly improved the nervous function and pathological changes after SCI. EA also reduced the number of GFAP/P-MLKL, GFAP/MLKL, GFAP/HMGB1, and Iba1/HMGB1 co-positive cells and inhibited the expressions of IL-6, IL-1β, and IL-33. The results indicate a significant reduction in inflammatory reaction and astrocytic necroptosis in mice with SCI by EA. Additionally, the expressions of RIP1, MLKL, and TLR4, which are associated with necroptosis, were found to be downregulated by EA. In this study, we confirmed that EA can inhibit neuroinflammation by reducing astrocytic necroptosis through downregulation of RIP1/MLKL/TLR4 pathway in mice with SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data are contained within the manuscript.

References

  1. Spinal cord injury. Available online: https://www.who.int/en/news-room/fact-sheets/detail/spinal-cord-injury. Accessed 19 Nov 2013

  2. Kerschensteiner M, Schwab ME, Lichtman JW, Misgeld T (2005) In vivo imaging of axonal degeneration and regeneration in the injured spinal cord. Nat Med 11:572–577. https://doi.org/10.1038/nm1229

    Article  PubMed  CAS  Google Scholar 

  3. Liu Z, Yao X, Jiang W, Li W, Zhu S, Liao C, Zou L, Ding R, Chen J (2020) Advanced oxidation protein products induce microglia-mediated neuroinflammation via MAPKs-NF-kappaB signaling pathway and pyroptosis after secondary spinal cord injury. J Neuroinflammation 17:90. https://doi.org/10.1186/s12974-020-01751-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Liu H, Zhang J, Xu X, Lu S, Yang D, Xie C, Jia M, Zhang W et al (2021) SARM1 promotes neuroinflammation and inhibits neural regeneration after spinal cord injury through NF-kappaB signaling. Theranostics 11:4187–4206. https://doi.org/10.7150/thno.49054

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Lindahl H, Bryceson YT (2021) Neuroinflammation associated with inborn errors of immunity. Front Immunol 12. https://doi.org/10.3389/fimmu.2021.827815

  6. Rice T, Larsen J, Rivest S, Yong VW (2007) Characterization of the early neuroinflammation after spinal cord injury in mice. J Neuropathol Exp Neurol 66:184–195. https://doi.org/10.1097/01.jnen.0000248552.07338.7f

    Article  PubMed  CAS  Google Scholar 

  7. Tran AP, Warren PM, Silver J (2018) The biology of regeneration failure and success after spinal cord injury. Physiol Rev 98:881–917. https://doi.org/10.1152/physrev.00017.2017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Thadathil N, Nicklas EH, Mohammed S, Lewis TL Jr, Richardson A, Deepa SS (2021) Necroptosis increases with age in the brain and contributes to age-related neuroinflammation. Geroscience 43:2345–2361. https://doi.org/10.1007/s11357-021-00448-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Pasparakis M, Vandenabeele P (2015) Necroptosis and its role in inflammation. Nature 517:311–320. https://doi.org/10.1038/nature14191

    Article  PubMed  CAS  Google Scholar 

  10. Sepand MR, Aliomrani M, Hasani-Nourian Y, Khalhori MR, Farzaei MH, Sanadgol N (2020) Mechanisms and pathogenesis underlying environmental chemical-induced necroptosis. Environ Sci Pollut Res Int 27:37488–37501. https://doi.org/10.1007/s11356-020-09360-5

    Article  PubMed  CAS  Google Scholar 

  11. Fan H, Zhang K, Shan L, Kuang F, Chen K, Zhu K, Ma H, Ju G, Wang Z (2016) Reactive astrocytes undergo M1 microglia/macrohpages-induced necroptosis in spinal cord injury. Mol Neurodegener 11:14. https://doi.org/10.1186/s13024-016-0081-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Daniels BP, Snyder AG, Olsen TM, Orozco S, Oguin TH 3rd, Tait SWG, Martinez J, Gale M et al (2017) RIPK3 restricts viral pathogenesis via cell death-independent neuroinflammation. Cell 169(301–313). https://doi.org/10.1016/j.cell.2017.03.011

  13. Salvadores N, Court FA (2020) The necroptosis pathway and its role in age-related neurodegenerative diseases: will it open up new therapeutic avenues in the next decade? Expert Opin Ther Targets 24:679–693. https://doi.org/10.1080/14728222.2020.1758668

  14. Lawlor KE, Khan N, Mildenhall A, Gerlic M, Croker BA, D’Cruz AA, Hall C, Kaur Spall S et al (2015) RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL. Nat Commun 6:6282. https://doi.org/10.1038/ncomms7282

    Article  PubMed  CAS  Google Scholar 

  15. Kaiser WJ, Sridharan H, Huang C, Mandal P, Upton JW, Gough PJ, Sehon CA, Marquis RW et al (2013) Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J Biol Chem 288:31268–31279. https://doi.org/10.1074/jbc.M113.462341

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. He S, Liang Y, Shao F, Wang X (2011) Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3-mediated pathway. Proc Natl Acad Sci U S A 108:20054–20059. https://doi.org/10.1073/pnas.1116302108

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dai N, Tang C, Liu H, Huang S (2021) Effect of electroacupuncture on inhibition of inflammatory response and oxidative stress through activating ApoE and Nrf2 in a mouse model of spinal cord injury. Brain Behav 11:e2328. https://doi.org/10.1002/brb3.2328

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Tan C, Yang C, Liu H, Tang C, Huang S (2021) Effect of Schwann cell transplantation combined with electroacupuncture on axonal regeneration and remyelination in rats with spinal cord injury. Anat Rec (Hoboken) 304:2506–2520. https://doi.org/10.1002/ar.24721

    Article  PubMed  CAS  Google Scholar 

  19. Chen Y, Wu L, Shi M, Zeng D, Hu R, Wu X, Han S, He K et al (2022) R Electroacupuncture inhibits NLRP3 activation by regulating CMPK2 after spinal cord injury. Front Immunol 13:788556. https://doi.org/10.3389/fimmu.2022.788556

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Sun Z, Li J, Yin H, Zeng X, Li Q, Li Z (2019) Review on acupuncture promoting the recovery of nerve function after spinal cord injury and the mechanism of related signal pathway. China J Tradit Chin Med Pharm 34; 5291–5296, CNKI:SUN:BXYY.0.2019–11–081

  21. David S, Kroner A (2011) Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci 12:388–399. https://doi.org/10.1038/nrn3053

    Article  PubMed  CAS  Google Scholar 

  22. Dai P, Huang S, Tang C, Dai N, Zhao H, Tan Y, Yang Y, Tao C (2021) Effects of electroacupuncture at "Jiaji" (EX-B2 ) on autophagy and endoplasmic reticulum stress in spinal cord injury mice. Zhenci Yanjiu Acupunct Res 46; 41–48. https://doi.org/10.13702/j.1000-0607.200229

  23. Jiang K, Sun Y, Chen X (2022) Mechanism underlying acupuncture therapy in spinal cord injury: a narrative overview of preclinical studies. Front Pharmacol 13:875103. https://doi.org/10.3389/fphar.2022.875103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Paterniti I, Esposito E, Cuzzocrea S (2018) An in vivo compression model of spinal cord injury. Methods Mol Biol 1727:379–384. https://doi.org/10.1007/978-1-4939-7571-6_29

    Article  PubMed  CAS  Google Scholar 

  25. Guo Y, Guo X (2021) The experimental guidance of experimental acupuncture and moxibustion. China Traditional Chinese Medicine Publishing House, Beijing, pp 52–57

    Google Scholar 

  26. Basso DM, Fisher LC, Anderson AJ, Jakeman LB, McTigue DM, Popovich PG (2006) Basso Mouse scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains. J Neurotrauma 23:635–659. https://doi.org/10.1089/neu.2006.23.635

    Article  PubMed  Google Scholar 

  27. Zhao H, Huang S, Tang C, Dai N, Dai P, Tan Y (2021) Influence of electroacupuncture on locomotor function and expression of spinal HMGB 1 and TLR4 in mice with spinal cord injury. Acupuncture Research 46; 259–265. https://doi.org/10.13702/j.1000-0607.200490

  28. Allen NJ, Eroglu C (2017) Cell biology of astrocyte-synapse interactions. Neuro 96(697):708. https://doi.org/10.1016/j.neuron.2017.09.056

    Article  CAS  Google Scholar 

  29. Molofsky AV, Krencik R, Ullian EM, Tsai HH, Deneen B, Richardson WD, Barres BA, Rowitch DH (2012) Astrocytes and disease: a neurodevelopmental perspective. Genes Dev 26:891–907. https://doi.org/10.1101/gad.188326.112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Kobayashi NR, Fan DP, Giehl KM, Bedard AM, Wiegand SJ, Tetzlaff W (1997) BDNF and NT-4/5 prevent atrophy of rat rubrospinal neurons after cervical axotomy, stimulate GAP-43 and Talpha1-tubulin mRNA expression, and promote axonal regeneration. J Neurosci 17:9583–9595

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Abbott NJ (2002) Astrocyte-endothelial interactions and blood-brain barrier permeability. J Anat 200:629–638. https://doi.org/10.1046/j.1469-7580.2002.00064.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Acosta MT, Gioia GA, Silva AJ (2006) Neurofibromatosis type 1: new insights into neurocognitive issues. Curr Neurol Neurosci Rep 6:136–143. https://doi.org/10.1007/s11910-996-0036-5

    Article  PubMed  CAS  Google Scholar 

  33. Wanner IB, Anderson MA, Song B, Levine J, Fernandez A, Gray-Thompson Z, Ao Y, Sofroniew MV (2013) Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury. J Neurosci 33:12870–12886. https://doi.org/10.1523/JNEUROSCI.2121-13.2013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Khoury MK, Gupta K, Franco SR, Liu B (2020) Necroptosis in the pathophysiology of disease. Am J Pathol 190:272–285. https://doi.org/10.1016/j.ajpath.2019.10.012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Liu L, Tang Z, Zeng Y, Liu Y, Zhou L, Yang S, Wang D (2021) Role of necroptosis in infection-related, immune-mediated, and autoimmune skin diseases. J Dermatol 48:1129–1138. https://doi.org/10.1111/1346-8138.15929

    Article  PubMed  CAS  Google Scholar 

  36. Newton K, Manning G (2016) Necroptosis and inflammation. Annu Rev Biochem 85:743–763. https://doi.org/10.1146/annurev-biochem-060815-014830

    Article  PubMed  CAS  Google Scholar 

  37. Chen W, Zhou Z, Li L, Zhong CQ, Zheng X, Wu X, Zhang Y, Ma H, Huang D, Li W, Xia Z, Han J (2013) Diverse sequence determinants control human and mouse receptor interacting protein 3 (RIP3) and mixed lineage kinase domain-like (MLKL) interaction in necroptotic signaling. J Biol Chem 288:16247–16261. https://doi.org/10.1074/jbc.M112.435545

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Zhang J, Yang Y, He W, Sun L (2016) Necrosome core machinery: MLKL. Cell Mol Life Sci 73:2153–2163. https://doi.org/10.1007/s00018-016-2190-5

    Article  PubMed  CAS  Google Scholar 

  39. Witt A, Vucic D (2017) Diverse ubiquitin linkages regulate RIP kinases-mediated inflammatory and cell death signaling. Cell Death Diffe 24:1160–1171. https://doi.org/10.1038/cdd.2017.33

    Article  CAS  Google Scholar 

  40. Najafov A, Mookhtiar AK, Luu HS, Ordureau A, Pan H, Amin PP, Li Y, Lu Q et al (2019) TAM kinases promote necroptosis by regulating oligomerization of MLKL. Mol Cell 75(457–468). https://doi.org/10.1016/j.molcel.2019.05.022

  41. Cai Z, Jitkaew S, Zhao J, Chiang HC, Choksi S, Liu J, Ward Y, Wu LG et al (2014) Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat Cell Biol 16:55–65. https://doi.org/10.1038/ncb2883

  42. Murao A, Aziz M, Wang H, Brenner M, Wang P (2021) Release mechanisms of major DAMPs. Apoptosis 26:152–162. https://doi.org/10.1007/s10495-021-01663-3

  43. Shlomovitz I, Erlich Z, Speir M, Zargarian S, Baram N, Engler M, Edry-Botzer L, Munitz A et al (2019) Necroptosis directly induces the release of full-length biologically active IL-33 in vitro and in an inflammatory disease model. FEBS J286:507–522. https://doi.org/10.1111/febs.14738

    Article  CAS  Google Scholar 

  44. Tang R, Xu J, Zhang B, Liu J, Liang C, Hua J, Meng Q, Yu X et al (2020) Ferroptosis, necroptosis, and pyroptosis in anticancer immunity. J Hematol Oncol 13:110. https://doi.org/10.1186/s13045-020-00946-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Menon MB, Gropengiesser J, Fischer J, Novikova L, Deuretzbacher A, Lafera J, Schimmeck H, Czymmeck N et al (2017) p38(MAPK)/MK2-dependent phosphorylation controls cytotoxic RIPK1 signalling in inflammation and infection. Nat Cell Biol 19:1248–1259. https://doi.org/10.1038/ncb3614

    Article  PubMed  CAS  Google Scholar 

  46. Simoes Eugenio M, Faurez F, Kara-Ali GH, Lagarrigue M, Uhart P, Bonnet MC, Gallais I, Com E et al (2021) TRIM21, a new component of the TRAIL-induced endogenous Necrosome Complex. Front Mol Biosci 8:645134. https://doi.org/10.3389/fmolb.2021.645134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Zhang Q, Jia Q, Gao W, Zhang W (2022) The role of deubiquitinases in virus replication and host innate immune response. Front Microbiol 13:839624. https://doi.org/10.3389/fmicb.2022.839624

    Article  PubMed  PubMed Central  Google Scholar 

  48. Festjens N, Vanden Berghe T, Cornelis S, Vandenabeele P (20007) RIP1, a kinase on the crossroads of a cell's decision to live or die. Cell Death Differ 14;400–410. https://doi.org/10.1038/sj.cdd.4402085

  49. Wang XW, Wang JX (2013) Pattern recognition receptors acting in innate immune system of shrimp against pathogen infections. Fish Shellfish Immunol 34:981–989. https://doi.org/10.1016/j.fsi.2012.08.008

    Article  PubMed  CAS  Google Scholar 

  50. Koper MJ, Van Schoor E, Ospitalieri S, Vandenberghe R, Vandenbulcke M, von Arnim CAF, Tousseyn T, Balusu S et al (2020) Necrosome complex detected in granulovacuolar degeneration is associated with neuronal loss in Alzheimer’s disease. Acta Neuropathol 139:463–484. https://doi.org/10.1007/s00401-019-02103-y

    Article  PubMed  CAS  Google Scholar 

  51. Land WG (2021) Role of DAMPs in respiratory virus-induced acute respiratory distress syndrome-with a preliminary reference to SARS-CoV-2 pneumonia. Genes Immun 22:141–160. https://doi.org/10.1038/s41435-021-00140-w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Land WG (2015) The role of damage-associated molecular patterns in human diseases: part I - promoting inflammation and immunity. Sultan Qaboos Univ Med J 15:e9–e21

    PubMed  PubMed Central  Google Scholar 

  53. Fonken LK, Frank MG, Kitt MM, D’Angelo HM, Norden DM, Weber MD, Barrientos RM, Godbout JP et al (2016) The alarmin HMGB1 mediates age-induced neuroinflammatory priming. J Neurosci 36:7946–7956. https://doi.org/10.1523/JNEUROSCI.1161-16.2016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Vainchtein ID, Chin G, Cho FS, Kelley KW, Miller JG, Chien EC, Liddelow SA, Nguyen PT et al (2018) Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development. Science 359:1269–1273. https://doi.org/10.1126/science.aal3589

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant numbers: 81403466 and 81273870), the Natural Science Foundation Project of CQ CSTC (Grant numbers: cstc2021jcyj-msxmX0203), and the joint Project of CQ CSTC and Health Commission of Chongqing (Grant numbers: ZY201802026, 2021ZY023890).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Hongdi Zhao and Xiaoqin Zong performed the whole experiments and molecular studies. Hongdi Zhao and Xiaoqin Zong contributed equally to this work. Long Li performed the molecular biology study and drafted the manuscript. Na Li and Chunlei Liu performed the molecular biology. Wanchao Zhang and Juan Li performed data analysis. Siqin Huang funded and conceived the study and participated in the study design and revised the manuscript. Cheng Yang participated in the study design. All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Cheng Yang or Siqin Huang.

Ethics declarations

Ethics Approval

This study was performed in line with “Guiding Opinions on the Treatment of Experimental Animals” (2006) from the Ministry of Science and Technology of the People’s Republic of China. Approval was granted by the Institutional Animal Care and Use Committer of Chongqing Medical University.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Zong, X., Li, L. et al. Electroacupuncture Inhibits Neuroinflammation Induced by Astrocytic Necroptosis Through RIP1/MLKL/TLR4 Pathway in a Mouse Model of Spinal Cord Injury. Mol Neurobiol (2023). https://doi.org/10.1007/s12035-023-03650-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-023-03650-y

Keywords

Navigation