Skip to main content

Advertisement

Log in

A New Approach for Exploring Reperfusion Brain Damage in Hypoxic Ischemic Encephalopathy

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Reperfusion is an essential pathological stage in hypoxic ischemic encephalopathy (HIE). Although the Rice-Vannucci model is widely used in HIE research, it remains difficult to replicate HIE-related reperfusion brain injury. The purpose of this study is to establish a rat model of hypoxia ischemia reperfusion brain damage (HIRBD) using a common carotid artery (CCA) muscle bridge in order to investigate the mechanisms of cerebral resistance to hypoxic-ischemic and reperfusion brain damage. Random assignment of Sprague–Dawley (SD) rats to the Sham, HIRBD, and Rice-Vannucci groups. Changes in body weight, mortality rate, spontaneous alternation behavior test (SAB test), and dynamic changes in cerebral blood flow (CBF) were detected. The damaged cerebral cortices were extracted for morphological comparison, transcriptomic analysis, and quantitative real-time PCR. Harvesting the hippocampus for transmission electron microscopy (TEM) detection. As a result, CCA muscle bridge could effectively block CBF, which recovered after the muscle bridge detachment. Pathological comparison, the SAB test, and TEM analysis revealed that brain damage in Rice-Vannucci was more severe than HIRBD. Gpx1, S100a6, Cldn5, Esr1, and Gfap were highly expressed in both HIRBD and Rice-Vannucci. In conclusion, the CCA muscle bridge-established HIRBD model could be used as an innovative and dependable model to simulate pathological process of HIRBD.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data are available on reasonable request. All raw data used in this manuscript are available on reasonable request.

References

  1. Kurinczuk JJ, White-Koning M, Badawi N (2010) Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy. Early Hum Dev 86:329–338. https://doi.org/10.1016/j.earlhumdev.2010.05.010

    Article  PubMed  Google Scholar 

  2. Kitai Y, Hirai S, Okuyama N, Hirotsune M, Nishimoto S, Hirano S et al (2021) Functional outcomes of children with dyskinetic cerebral palsy depend on etiology and gestational age. Eur J Paediatr Neurol 30:108–112. https://doi.org/10.1016/j.ejpn.2020.11.002

    Article  PubMed  Google Scholar 

  3. Nevalainen P, Metsäranta M, Toiviainen-Salo S, Marchi V, Mikkonen K, Vanhatalo S et al (2020) Neonatal neuroimaging and neurophysiology predict infantile onset epilepsy after perinatal hypoxic ischemic encephalopathy. Seizure 80:249–256. https://doi.org/10.1016/j.seizure.2020.07.002

    Article  PubMed  Google Scholar 

  4. Douglas-Escobar M, Weiss MD (2015) Hypoxic-ischemic encephalopathy: a review for the clinician. JAMA Pediatr 169:397–403. https://doi.org/10.1001/jamapediatrics.2014.3269

    Article  PubMed  Google Scholar 

  5. Azzopardi DV, Strohm B, Edwards AD, Dyet L, Halliday HL, Juszczak E et al (2009) Moderate hypothermia to treat perinatal asphyxial encephalopathy. N Engl J Med 361:1349–1358. https://doi.org/10.1056/NEJMoa0900854

    Article  CAS  PubMed  Google Scholar 

  6. Zalewska T, Jaworska J, Ziemka-Nalecz M (2015) Current and experimental pharmacological approaches in neonatal hypoxic- ischemic encephalopathy. Curr Pharm Des 21:1433–1439. https://doi.org/10.2174/1381612820999141029162457

    Article  CAS  PubMed  Google Scholar 

  7. Espinoza MI, Parer JT (1991) Mechanisms of asphyxial brain damage, and possible pharmacologic interventions, in the fetus. Am J Obstet Gynecol 164:1582–1589. https://doi.org/10.1016/0002-9378(91)91440-8. (discussion 1589-1591)

    Article  CAS  PubMed  Google Scholar 

  8. Mishra OP, Delivoria-Papadopoulos M (1999) Cellular mechanisms of hypoxic injury in the developing brain. Brain Res Bull 48:233–238. https://doi.org/10.1016/s0361-9230(98)00170-1

    Article  CAS  PubMed  Google Scholar 

  9. Rice JE 3rd, Vannucci RC, Brierley JB (1981) The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol 9:131–141. https://doi.org/10.1002/ana.410090206

    Article  PubMed  Google Scholar 

  10. Derugin N, Wendland M, Muramatsu K, Roberts TP, Gregory G, Ferriero DM et al (2000) Evolution of brain injury after transient middle cerebral artery occlusion in neonatal rats. Stroke 31:1752–1761. https://doi.org/10.1161/01.str.31.7.1752

    Article  CAS  PubMed  Google Scholar 

  11. Larpthaveesarp A, Gonzalez FF (2017) Transient middle cerebral artery occlusion model of neonatal stroke in p10 rats. J Vis Exp. https://doi.org/10.3791/54830

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gao X, Huang D, Yang LS, He AQ, Li KY, Liu T et al (2022) Identification of gut microbiome and transcriptome changes in ulcerative colitis and pouchitis. Scand J Gastroenterol 57:942–952. https://doi.org/10.1080/00365521.2022.2047221

    Article  CAS  PubMed  Google Scholar 

  13. Edgar R, Domrachev M, Lash AE (2002) Gene expression omnibus: Ncbi gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210. https://doi.org/10.1093/nar/30.1.207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Webster SJ, Bachstetter AD, Nelson PT, Schmitt FA, Van Eldik LJ (2014) Using mice to model alzheimer’s dementia: an overview of the clinical disease and the preclinical behavioral changes in 10 mouse models. Front Genet 5:88. https://doi.org/10.3389/fgene.2014.00088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hughes RN (2004) The value of spontaneous alternation behavior (sab) as a test of retention in pharmacological investigations of memory. Neurosci Biobehav Rev 28:497–505. https://doi.org/10.1016/j.neubiorev.2004.06.006

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  16. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for rna-seq data with deseq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:15545–15550. https://doi.org/10.1073/pnas.0506580102

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  18. Ekoue DN, He C, Diamond AM, Bonini MG (2017) Manganese superoxide dismutase and glutathione peroxidase-1 contribute to the rise and fall of mitochondrial reactive oxygen species which drive oncogenesis. Biochim Biophys Acta Bioenerg 1858:628–632. https://doi.org/10.1016/j.bbabio.2017.01.006

    Article  CAS  PubMed  Google Scholar 

  19. Liao Z, Yang Z, Piontek A, Eichner M, Krause G, Li L et al (2016) Specific binding of a mutated fragment of clostridium perfringens enterotoxin to endothelial claudin-5 and its modulation of cerebral vascular permeability. Neuroscience 327:53–63. https://doi.org/10.1016/j.neuroscience.2016.04.013

    Article  CAS  PubMed  Google Scholar 

  20. Middeldorp J, Hol EM (2011) Gfap in health and disease. Prog Neurobiol 93:421–443. https://doi.org/10.1016/j.pneurobio.2011.01.005

    Article  CAS  PubMed  Google Scholar 

  21. Donato R, Cannon BR, Sorci G, Riuzzi F, Hsu K, Weber DJ et al (2013) Functions of s100 proteins. Curr Mol Med 13:24–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yamashita N, Ilg EC, Schäfer BW, Heizmann CW, Kosaka T (1999) Distribution of a specific calcium-binding protein of the s100 protein family, s100a6 (calcyclin), in subpopulations of neurons and glial cells of the adult rat nervous system. J Comp Neurol 404:235–257

    Article  CAS  PubMed  Google Scholar 

  23. Simpkins JW, Richardson TE, Yi KD, Perez E, Covey DF (2013) Neuroprotection with non-feminizing estrogen analogues: an overlooked possible therapeutic strategy. Horm Behav 63:278–283. https://doi.org/10.1016/j.yhbeh.2012.03.013

    Article  CAS  PubMed  Google Scholar 

  24. Beasley TC, Bari F, Thore C, Thrikawala N, Louis T, Busija D (1998) Cerebral ischemia/reperfusion increases endothelial nitric oxide synthase levels by an indomethacin-sensitive mechanism. J Cereb Blood Flow Metab 18:88–96. https://doi.org/10.1097/00004647-199801000-00009

    Article  CAS  PubMed  Google Scholar 

  25. Nogawa S, Forster C, Zhang F, Nagayama M, Ross ME, Iadecola C (1998) Interaction between inducible nitric oxide synthase and cyclooxygenase-2 after cerebral ischemia. Proc Natl Acad Sci U S A 95:10966–10971. https://doi.org/10.1073/pnas.95.18.10966

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  26. Szaflarski J, Burtrum D, Silverstein FS (1995) Cerebral hypoxia-ischemia stimulates cytokine gene expression in perinatal rats. Stroke 26:1093–1100. https://doi.org/10.1161/01.str.26.6.1093

    Article  CAS  PubMed  Google Scholar 

  27. Burton GJ, Jauniaux E (2011) Oxidative stress. Best Pract Res Clin Obstet Gynaecol 25:287–299. https://doi.org/10.1016/j.bpobgyn.2010.10.016

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wang WZ, Liu X, Yang ZY, Wang YZ, Lu HT (2022) Diffusion tensor imaging of the hippocampus reflects the severity of hippocampal injury induced by global cerebral ischemia/reperfusion injury. Neural Regen Res 17:838–844. https://doi.org/10.4103/1673-5374.322468

    Article  CAS  PubMed  Google Scholar 

  29. Vigil TM, Frieler RA, Kilpatrick KL, Wang MM, Mortensen RM (2022) Aconitate decarboxylase 1 suppresses cerebral ischemia-reperfusion injury in mice. Exp Neurol 347:113902. https://doi.org/10.1016/j.expneurol.2021.113902

    Article  CAS  PubMed  Google Scholar 

  30. Li X, Ma N, Xu J, Zhang Y, Yang P, Su X et al (2021) Targeting ferroptosis: Pathological mechanism and treatment of ischemia-reperfusion injury. Oxid Med Cell Longev 2021:1587922. https://doi.org/10.1155/2021/1587922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hagberg H, Mallard C, Ferriero DM, Vannucci SJ, Levison SW, Vexler ZS et al (2015) The role of inflammation in perinatal brain injury. Nat Rev Neurol 11:192–208. https://doi.org/10.1038/nrneurol.2015.13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhou Z, Ma Y, Xu T, Wu S, Yang GY, Ding J et al (2022) Deeper cerebral hypoperfusion leads to spatial cognitive impairment in mice. Stroke Vasc Neurol. https://doi.org/10.1136/svn-2022-001594

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sparnaaij M, Chedraui P, Liem KH, Escobar GS, Espinoza-Caicedo J, Kramer BW et al (2016) Fetal asphyctic preconditioning in rats results in a preserved placental inflammatory phenotype at birth. Placenta 38:84–92. https://doi.org/10.1016/j.placenta.2015.12.016

    Article  CAS  PubMed  Google Scholar 

  34. Schwartz PH, Massarweh WF, Vinters HV, Wasterlain CG (1992) A rat model of severe neonatal hypoxic-ischemic brain injury. Stroke 23:539–546. https://doi.org/10.1161/01.str.23.4.539

    Article  CAS  PubMed  Google Scholar 

  35. Derugin N, Ferriero DM, Vexler ZS (1998) Neonatal reversible focal cerebral ischemia: a new model. Neurosci Res 32:349–353. https://doi.org/10.1016/s0168-0102(98)00096-0

    Article  CAS  PubMed  Google Scholar 

  36. Pundik S, Robinson S, Lust WD, Zechel J, Buczek M, Selman WR (2006) Regional metabolic status of the e-18 rat fetal brain following transient hypoxia/ischemia. Metab Brain Dis 21:309–317. https://doi.org/10.1007/s11011-006-9031-4

    Article  CAS  PubMed  Google Scholar 

  37. Li Y, Chen Y (2017) Experimental study on the suture-occluded technique for ischemia-reperfusion injury models in rats. Acta Academiae Medicinae Wannan 36:4

    Google Scholar 

  38. Zhang S, Wu M, Peng C, Zhao G, Gu R (2017) Gfap expression in injured astrocytes in rats. Exp Ther Med 14:1905–1908. https://doi.org/10.3892/etm.2017.4760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Florio P, Abella R, Marinoni E, Di Iorio R, Li Volti G, Galvano F et al (2010) Biochemical markers of perinatal brain damage. Front Biosci (Schol Ed) 2:47–72. https://doi.org/10.2741/s45

    Article  PubMed  Google Scholar 

  40. Lubos E, Loscalzo J, Handy DE (2011) Glutathione peroxidase-1 in health and disease: From molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 15:1957–1997. https://doi.org/10.1089/ars.2010.3586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Brenner M (2014) Role of gfap in cns injuries. Neurosci Lett 565:7–13. https://doi.org/10.1016/j.neulet.2014.01.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yamada J, Jinno S (2014) S100a6 (calcyclin) is a novel marker of neural stem cells and astrocyte precursors in the subgranular zone of the adult mouse hippocampus. Hippocampus 24:89–101. https://doi.org/10.1002/hipo.22207

    Article  CAS  PubMed  Google Scholar 

  43. Fang B, Liang M, Yang G, Ye Y, Xu H, He X et al (2014) Expression of s100a6 in rat hippocampus after traumatic brain injury due to lateral head acceleration. Int J Mol Sci 15:6378–6390. https://doi.org/10.3390/ijms15046378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chiba H, Ichikawa-Tomikawa N, Imura T, Sugimoto K (2021) The region-selective regulation of endothelial claudin-5 expression and signaling in brain health and disorders. J Cell Physiol 236:7134–7143. https://doi.org/10.1002/jcp.30357

    Article  CAS  PubMed  Google Scholar 

  45. Wang J, Hou Y, Zhang L, Liu M, Zhao J, Zhang Z et al (2021) Estrogen attenuates traumatic brain injury by inhibiting the activation of microglia and astrocyte-mediated neuroinflammatory responses. Mol Neurobiol 58:1052–1061. https://doi.org/10.1007/s12035-020-02171-2

    Article  CAS  PubMed  Google Scholar 

  46. Shin JA, Choi JH, Choi YH, Park EM (2011) Conserved aquaporin 4 levels associated with reduction of brain edema are mediated by estrogen in the ischemic brain after experimental stroke. Biochim Biophys Acta 1812:1154–1163. https://doi.org/10.1016/j.bbadis.2011.05.004

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (No. 82271747) and the Natural Science Foundation of Zhejiang Province (No. LY23H040004).

Author information

Authors and Affiliations

Authors

Contributions

Z.L. is the principal investigator and designed the study. T.Z. and Z.Z. contributed to the study design, experiment implementation and manuscript draft. J.G., K.L., M.J., and X. L. summarized and analyzed the experimental data. X.G. and J.Z. revised the manuscript and polished the language. The author(s) read and approved the final manuscript. T.Z. is responsible for the overall content as the guarantor.

Corresponding authors

Correspondence to Jianghu Zhu, Xiaoling Guo or Zhenlang Lin.

Ethics declarations

Ethics Approval

All animal experiments were performed according to the Institutional Animal Care and Use Committee (IACUC). The procedures were conducted according to the National Institutes of Health’s Guide for the Care and the Use of Laboratory Animals and the Animal Research: Reporting In Vivo Experiments (ARRIVE) guidelines, and all animals were approved by the Animal Experimentation Ethics Committee of Wenzhou Medical University.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Tianlei Zhang, Zhiwei Zhang, Jiayi Geng, and Kexin Lin contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Zhang, Z., Geng, J. et al. A New Approach for Exploring Reperfusion Brain Damage in Hypoxic Ischemic Encephalopathy. Mol Neurobiol 61, 1417–1432 (2024). https://doi.org/10.1007/s12035-023-03645-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03645-9

Keywords

Navigation