Skip to main content

Advertisement

Log in

Gemfibrozil Alleviates Cognitive Impairment by Inhibiting Ferroptosis of Astrocytes via Restoring the Iron Metabolism and Promoting Antioxidant Capacity in Type 2 Diabetes

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Diabetes-associated cognitive dysfunction (DACD) is considered a significant complication of diabetes and manifests as cognitive impairment. Astrocytes are vital to the brain energy metabolism and cerebral antioxidant status. Ferroptosis has been implicated in cognitive impairment, but it is unclear whether the ferroptosis of astrocytes is involved in the progression of DACD. PPARA/PPARα (peroxisome proliferator-activated receptor alpha) is a transcription factor that regulates glucose and lipid metabolism in the brain. In this study, we demonstrated that high glucose promoted ferroptosis of astrocytes by disrupting iron metabolism and suppressing the xCT/GPX4-regulated pathway in diabetic mice and astrocytes cultured in high glucose. Administration of gemfibrozil, a known PPARα agonist, inhibited ferroptosis and improved memory impairment in db/db mice. Gemfibrozil also prevented the accumulation of lipid peroxidation products and lethal reactive oxygen species induced by iron deposition in astrocytes and substantially reduced neuronal and synaptic loss. Our findings demonstrated that ferroptosis of astrocytes is a novel mechanism in the development of DACD. Additionally, our study revealed the therapeutic effect of gemfibrozil in preventing and treating DACD by inhibiting ferroptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated in the current research are available from the corresponding author on reasonable request.

References

  1. Brussels B (2021) International Diabetes Federation. IDF Diabetes Atlas, 10th edn. International Diabetes Federation

  2. Biessels GJ, Whitmer RA (2020) Cognitive dysfunction in diabetes: how to implement emerging guidelines. Diabetologia 63(1):3–9. https://doi.org/10.1007/s00125-019-04977-9

    Article  PubMed  Google Scholar 

  3. Chatterjee S, Peters SA, Woodward M, Mejia Arango S, Batty GD, Beckett N, Beiser A, Borenstein AR et al (2016) Type 2 Diabetes as a Risk Factor for Dementia in Women Compared With Men: A Pooled Analysis of 2.3 Million People Comprising More Than 100,000 Cases of Dementia. Diabetes Care 39(2):300–307. https://doi.org/10.2337/dc15-1588

  4. Xu W, Caracciolo B, Wang HX, Winblad B, Backman L, Qiu C, Fratiglioni L (2010) Accelerated progression from mild cognitive impairment to dementia in people with diabetes. Diabetes 59(11):2928–2935. https://doi.org/10.2337/db10-0539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149(5):1060–1072. https://doi.org/10.1016/j.cell.2012.03.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yan HF, Zou T, Tuo QZ, Xu S, Li H, Belaidi AA, Lei P (2021) Ferroptosis: mechanisms and links with diseases. Signal Transduct Target Ther 6(1):49. https://doi.org/10.1038/s41392-020-00428-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu Q, Sun L, Tan Y, Wang G, Lin X, Cai L (2009) Role of iron deficiency and overload in the pathogenesis of diabetes and diabetic complications. Curr Med Chem 16(1):113–129. https://doi.org/10.2174/092986709787002862

    Article  CAS  PubMed  Google Scholar 

  8. Ayala A, Munoz MF, Arguelles S (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev 2014:360438. https://doi.org/10.1155/2014/360438

  9. Belanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14(6):724–738. https://doi.org/10.1016/j.cmet.2011.08.016

    Article  CAS  PubMed  Google Scholar 

  10. Yang Q, Zhou L, Liu C, Liu D, Zhang Y, Li C, Shang Y, Wei X et al (2018) Brain iron deposition in type 2 diabetes mellitus with and without mild cognitive impairment-an in vivo susceptibility mapping study. Brain Imaging Behav 12(5):1479–1487. https://doi.org/10.1007/s11682-017-9815-7

    Article  PubMed  Google Scholar 

  11. Guan ZF, Tao YH, Zhang XM, Guo QL, Liu YC, Zhang Y, Wang YM, Ji G et al (2017) G-CSF and cognitive dysfunction in elderly diabetic mice with cerebral small vessel disease: Preventive intervention effects and underlying mechanisms. CNS Neurosci Ther 23(6):462–474. https://doi.org/10.1111/cns.12691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119(1):7–35. https://doi.org/10.1007/s00401-009-0619-8

    Article  PubMed  Google Scholar 

  13. Belanger M, Magistretti PJ (2009) The role of astroglia in neuroprotection. Dialogues Clin Neurosci 11(3):281–295

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dringen R (2000) Metabolism and functions of glutathione in brain. Prog Neurobiol 62(6):649–671. https://doi.org/10.1016/s0301-0082(99)00060-x

    Article  CAS  PubMed  Google Scholar 

  15. Makar TK, Nedergaard M, Preuss A, Gelbard AS, Perumal AS, Cooper AJ (1994) Vitamin E, ascorbate, glutathione, glutathione disulfide, and enzymes of glutathione metabolism in cultures of chick astrocytes and neurons: evidence that astrocytes play an important role in antioxidative processes in the brain. J Neurochem 62(1):45–53. https://doi.org/10.1046/j.1471-4159.1994.62010045.x

    Article  CAS  PubMed  Google Scholar 

  16. Desagher S, Glowinski J, Premont J (1996) Astrocytes protect neurons from hydrogen peroxide toxicity. J Neurosci 16(8):2553–2562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Peuchen S, Bolanos JP, Heales SJ, Almeida A, Duchen MR, Clark JB (1997) Interrelationships between astrocyte function, oxidative stress and antioxidant status within the central nervous system. Prog Neurobiol 52(4):261–281. https://doi.org/10.1016/s0301-0082(97)00010-5

    Article  CAS  PubMed  Google Scholar 

  18. Tanaka J, Toku K, Zhang B, Ishihara K, Sakanaka M, Maeda N (1999) Astrocytes prevent neuronal death induced by reactive oxygen and nitrogen species. Glia 28(2):85–96. https://doi.org/10.1002/(sici)1098-1136(199911)28:2%3c85::aid-glia1%3e3.0.co;2-y

    Article  CAS  PubMed  Google Scholar 

  19. Dringen R, Bishop GM, Koeppe M, Dang TN, Robinson SR (2007) The pivotal role of astrocytes in the metabolism of iron in the brain. Neurochem Res 32(11):1884–1890. https://doi.org/10.1007/s11064-007-9375-0

    Article  CAS  PubMed  Google Scholar 

  20. Park MW, Cha HW, Kim J, Kim JH, Yang H, Yoon S, Boonpraman N, Yi SS et al (2021) NOX4 promotes ferroptosis of astrocytes by oxidative stress-induced lipid peroxidation via the impairment of mitochondrial metabolism in Alzheimer’s diseases. Redox Biol 41:101947. https://doi.org/10.1016/j.redox.2021.101947

  21. Li S, Zhou C, Zhu Y, Chao Z, Sheng Z, Zhang Y, Zhao Y (2021) Ferrostatin-1 alleviates angiotensin II (Ang II)- induced inflammation and ferroptosis in astrocytes. Int Immunopharmacol 90:107179. https://doi.org/10.1016/j.intimp.2020.107179

  22. Wysowski DK, Kennedy DL, Gross TP (1990) Prescribed use of cholesterol-lowering drugs in the United States, 1978 through 1988. JAMA 263(16):2185–2188

    Article  CAS  PubMed  Google Scholar 

  23. Ni YF, Wang H, Gu QY, Wang FY, Wang YJ, Wang JL, Jiang B (2018) Gemfibrozil has antidepressant effects in mice: involvement of the hippocampal brain-derived neurotrophic factor system. J Psychopharmacol 32(4):469–481. https://doi.org/10.1177/0269881118762072

    Article  CAS  PubMed  Google Scholar 

  24. Gottschalk CG, Jana M, Roy A, Patel DR, Pahan K (2021) Gemfibrozil protects dopaminergic neurons in a mouse model of Parkinson’s disease via PPARalpha-dependent astrocytic GDNF pathway. J Neurosci 41(10):2287–2300. https://doi.org/10.1523/JNEUROSCI.3018-19.2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ghosh A, Jana M, Modi K, Gonzalez FJ, Sims KB, Berry-Kravis E, Pahan K (2015) Activation of peroxisome proliferator-activated receptor alpha induces lysosomal biogenesis in brain cells: implications for lysosomal storage disorders. J Biol Chem 290(16):10309–10324. https://doi.org/10.1074/jbc.M114.610659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Keller H, Dreyer C, Medin J, Mahfoudi A, Ozato K, Wahli W (1993) Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferator-activated receptor-retinoid X receptor heterodimers. Proc Natl Acad Sci U S A 90(6):2160–2164. https://doi.org/10.1073/pnas.90.6.2160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Staels B, Koenig W, Habib A, Merval R, Lebret M, Torra IP, Delerive P, Fadel A et al (1998) Activation of human aortic smooth-muscle cells is inhibited by PPARalpha but not by PPARgamma activators. Nature 393(6687):790–793. https://doi.org/10.1038/31701

    Article  CAS  PubMed  Google Scholar 

  28. Kersten S (2014) Integrated physiology and systems biology of PPARalpha. Mol Metab 3(4):354–371. https://doi.org/10.1016/j.molmet.2014.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mandala A, Armstrong A, Girresch B, Zhu J, Chilakala A, Chavalmane S, Chaudhary K, Biswas P et al (2020) Fenofibrate prevents iron induced activation of canonical Wnt/beta-catenin and oxidative stress signaling in the retina. NPJ Aging Mech Dis 6:12. https://doi.org/10.1038/s41514-020-00050-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Venkatesh D, O’Brien NA, Zandkarimi F, Tong DR, Stokes ME, Dunn DE, Kengmana ES, Aron AT et al (2020) MDM2 and MDMX promote ferroptosis by PPARalpha-mediated lipid remodeling. Genes Dev 34(7–8):526–543. https://doi.org/10.1101/gad.334219.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lin Z, Liu J, Long F, Kang R, Kroemer G, Tang D, Yang M (2022) The lipid flippase SLC47A1 blocks metabolic vulnerability to ferroptosis. Nat Commun 13(1):7965. https://doi.org/10.1038/s41467-022-35707-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xing G, Meng L, Cao S, Liu S, Wu J, Li Q, Huang W, Zhang L (2022) PPARalpha alleviates iron overload-induced ferroptosis in mouse liver. EMBO Rep 23(8):e52280. https://doi.org/10.15252/embr.202052280

  33. Ozansoy G, Akin B, Aktan F, Karasu C (2001) Short-term gemfibrozil treatment reverses lipid profile and peroxidation but does not alter blood glucose and tissue antioxidant enzymes in chronically diabetic rats. Mol Cell Biochem 216(1–2):59–63. https://doi.org/10.1023/a:1011000327529

    Article  CAS  PubMed  Google Scholar 

  34. Haubenwallner S, Essenburg AD, Barnett BC, Pape ME, DeMattos RB, Krause BR, Minton LL, Auerbach BJ et al (1995) Hypolipidemic activity of select fibrates correlates to changes in hepatic apolipoprotein C-III expression: a potential physiologic basis for their mode of action. J Lipid Res 36(12):2541–2551

    Article  CAS  PubMed  Google Scholar 

  35. Ding B, Lin C, Liu Q, He Y, Ruganzu JB, Jin H, Peng X, Ji S et al (2020) Tanshinone IIA attenuates neuroinflammation via inhibiting RAGE/NF-kappaB signaling pathway in vivo and in vitro. J Neuroinflammation 17(1):302. https://doi.org/10.1186/s12974-020-01981-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li W, Roy Choudhury G, Winters A, Prah J, Lin W, Liu R, Yang SH (2018) Hyperglycemia alters astrocyte metabolism and inhibits astrocyte proliferation. Aging Dis 9(4):674–684. https://doi.org/10.14336/AD.2017.1208

    Article  PubMed  PubMed Central  Google Scholar 

  37. Jiang X, Stockwell BR, Conrad M (2021) Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol 22(4):266–282. https://doi.org/10.1038/s41580-020-00324-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, Kang R, Tang D (2016) Ferroptosis: process and function. Cell Death Differ 23(3):369–379. https://doi.org/10.1038/cdd.2015.158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA et al (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156(1–2):317–331. https://doi.org/10.1016/j.cell.2013.12.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lewerenz J, Hewett SJ, Huang Y, Lambros M, Gout PW, Kalivas PW, Massie A, Smolders I et al (2013) The cystine/glutamate antiporter system x(c)(-) in health and disease: from molecular mechanisms to novel therapeutic opportunities. Antioxid Redox Signal 18(5):522–555. https://doi.org/10.1089/ars.2011.4391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu J, Hu X, Xue Y, Liu C, Liu D, Shang Y, Shi Y, Cheng L et al (2020) Targeting hepcidin improves cognitive impairment and reduces iron deposition in a diabetic rat model. Am J Transl Res 12(8):4830–4839

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Stockwell BR, FriedmannAngeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascon S et al (2017) Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell 171(2):273–285. https://doi.org/10.1016/j.cell.2017.09.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Luo R, Su LY, Li G, Yang J, Liu Q, Yang LX, Zhang DF, Zhou H et al (2020) Activation of PPARA-mediated autophagy reduces Alzheimer disease-like pathology and cognitive decline in a murine model. Autophagy 16(1):52–69. https://doi.org/10.1080/15548627.2019.1596488

    Article  CAS  PubMed  Google Scholar 

  44. Wen X, Wang JS, Backman JT, Kivisto KT, Neuvonen PJ (2001) Gemfibrozil is a potent inhibitor of human cytochrome P450 2C9. Drug Metab Dispos 29(11):1359–1361

    CAS  PubMed  Google Scholar 

  45. Niemi M, Neuvonen PJ, Kivisto KT (2001) Effect of gemfibrozil on the pharmacokinetics and pharmacodynamics of glimepiride. Clin Pharmacol Ther 70(5):439–445. https://doi.org/10.1067/mcp.2001.119723

    Article  CAS  PubMed  Google Scholar 

  46. Zou Y, Li H, Graham ET, Deik AA, Eaton JK, Wang W, Sandoval-Gomez G, Clish CB et al (2020) Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis. Nat Chem Biol 16(3):302–309. https://doi.org/10.1038/s41589-020-0472-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wilson JX (1997) Antioxidant defense of the brain: a role for astrocytes. Can J Physiol Pharmacol 75(10–11):1149–1163

    Article  CAS  PubMed  Google Scholar 

  48. Schneider C, Tallman KA, Porter NA, Brash AR (2001) Two distinct pathways of formation of 4-hydroxynonenal. Mechanisms of nonenzymatic transformation of the 9- and 13-hydroperoxides of linoleic acid to 4-hydroxyalkenals. J Biol Chem 276(24):20831–20838. https://doi.org/10.1074/jbc.M101821200

  49. Yoritaka A, Hattori N, Uchida K, Tanaka M, Stadtman ER, Mizuno Y (1996) Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease. Proc Natl Acad Sci U S A 93(7):2696–2701. https://doi.org/10.1073/pnas.93.7.2696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors want to acknowledge the anonymous reviewers for their insightful comments to improve this paper. The authors are also thankful to Xiaoli Qu, from the State Key Laboratory for Manufacturing Systems Engineering of Xi’an Jiaotong University, for her assistance with image acquisition. And the authors would like to appreciate Dr. Yansong Li, Prof. Ning Huang, and Siyuan Lei for their helpful discussion on manuscript improvement.

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 81974540, 82274290), Key Research & Development Program of Shaanxi (Program No. 2022ZDLSF02-09), and Innovation Capability Support Program of Shaanxi (Program No. 2021TD-58).

Author information

Authors and Affiliations

Authors

Contributions

Nan Wang: Conceptualization, Investigation, Validation, Data Curation, Investigation, Writing—Original Draft. Yujing Zhao: Methodology, Investigation, Validation, Formal analysis, Investigation. Meiyan Wu: Methodology, Investigation, Formal analysis, Visualization. Na Li: Software, Formal analysis, Data Curation. Chaoying Yan: Investigation, Visualization. Hongyan Guo: Software, Formal analysis. Qiao Li: Data Curation, Visualization. Qing Li: Visualization, Conceptualization, Writing—Review & Editing. Qiang Wang: Conceptualization, Writing—Review & Editing, Supervision, Project administration, Funding acquisition.

Corresponding authors

Correspondence to Qing Li or Qiang Wang.

Ethics declarations

Ethics Approval

Attempts were made to lessen animal suffering and the number of animals employed. All animal experiments were approved by the ethical standards of Institutional Animal Care and Use Committees of Xi’an Jiaotong University, Xi’an, China in accordance with the Care and Use of Laboratory Animals of the National Institutes of Health.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3946 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N., Zhao, Y., Wu, M. et al. Gemfibrozil Alleviates Cognitive Impairment by Inhibiting Ferroptosis of Astrocytes via Restoring the Iron Metabolism and Promoting Antioxidant Capacity in Type 2 Diabetes. Mol Neurobiol 61, 1187–1201 (2024). https://doi.org/10.1007/s12035-023-03589-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03589-0

Keywords

Navigation