Skip to main content
Log in

Electroacupuncture Alleviates Neuropathic Pain by Suppressing Ferroptosis in Dorsal Root Ganglion via SAT1/ALOX15 Signaling

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Neuropathic pain affects globally about 7–10% of the general population. Electroacupuncture (EA) effectively relieves neuropathic pain symptoms without causing any side effects; however, the underlying molecular mechanisms remain unclear. We established a chronic constriction injury (CCI)-induced rat model of neuropathic pain. RNA sequencing was used to screen for differentially expressed genes in the dorsal root ganglion after CCI and EA treatment. We identified gene markers of ferroptosis spermidine/spermine N1-acetyltransferase 1 (Sat1) and arachidonate 15-lipoxygenase (Alox15) to be dysregulated in the CCI-induced neuropathic pain model. Furthermore, EA relieved CCI-induced pain as well as ferroptosis-related symptoms in the dorsal root ganglion, including lipid peroxidation and iron overload. Finally, SAT1 knockdown also alleviated mechanical and thermal pain hypersensitivity and reversed ferroptosis damage. In conclusion, we showed that EA inhibited ferroptosis by regulating the SAT1/ALOX15 pathway to treat neuropathic pain. Our findings provide insight into the mechanisms of EA and suggest a novel therapeutic target for neuropathic pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All the data supporting the findings of this study are available within the article and from the corresponding author upon reasonable request.

References

  1. Szok D, Tajti J, Nyári A, Vécsei L (2019) Therapeutic approaches for Peripheral and Central Neuropathic Pain. Behav Neurol 2019:8685954. https://doi.org/10.1155/2019/8685954

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bannister K, Sachau J, Baron R, Dickenson AH (2020) Neuropathic Pain: mechanism-based therapeutics. Annu Rev Pharmacol Toxicol 60:257–274. https://doi.org/10.1146/annurev-pharmtox-010818-021524

    Article  CAS  PubMed  Google Scholar 

  3. Bose KS, Sarma RH (1975) Delineation of the intimate details of the backbone conformation of pyridine nucleotide coenzymes in aqueous solution. Biochem Biophys Res Commun 66(4):1173–1179. https://doi.org/10.1016/0006-291x(75)90482-9

    Article  CAS  PubMed  Google Scholar 

  4. Scholz J, Finnerup NB, Attal N, Aziz Q, Baron R, Bennett MI, Benoliel R, Cohen M, Cruccu G, Davis KD, Evers S, First M, Giamberardino MA, Hansson P, Kaasa S, Korwisi B, Kosek E, Lavand’homme P, Nicholas M, Nurmikko T, Perrot S, Raja SN, Rice ASC, Rowbotham MC, Schug S, Simpson DM, Smith BH, Svensson P, Vlaeyen JWS, Wang SJ, Barke A, Rief W, Treede RD (2019) The IASP classification of chronic pain for ICD-11: chronic neuropathic pain. Pain 160(1):53–59. https://doi.org/10.1097/j.pain.0000000000001365

    Article  PubMed  PubMed Central  Google Scholar 

  5. Treede RD (2019) The role of quantitative sensory testing in the prediction of chronic pain. Pain 160 Suppl 1S66–s69. https://doi.org/10.1097/j.pain.0000000000001544

  6. Zhao XY, Zhang QS, Yang J, Sun FJ, Wang DX, Wang CH, He WY (2015) The role of arginine vasopressin in electroacupuncture treatment of primary sciatica in human. Neuropeptides 52:61–65. https://doi.org/10.1016/j.npep.2015.06.002

    Article  CAS  PubMed  Google Scholar 

  7. Zhao ZQ (2008) Neural mechanism underlying acupuncture analgesia. Prog Neurobiol 85(4):355–375. https://doi.org/10.1016/j.pneurobio.2008.05.004

    Article  PubMed  Google Scholar 

  8. Chen XM, Xu J, Song JG, Zheng BJ, Wang XR (2015) Electroacupuncture inhibits excessive interferon-γ evoked up-regulation of P2X4 receptor in spinal microglia in a CCI rat model for neuropathic pain. Br J Anaesth 114(1):150–157. https://doi.org/10.1093/bja/aeu199

    Article  CAS  PubMed  Google Scholar 

  9. Lin J, Li G, Den X, Xu C, Liu S, Gao Y, Liu H, Zhang J, Li X, Liang S (2010) VEGF and its receptor-2 involved in neuropathic pain transmission mediated by P2X(/) receptor of primary sensory neurons. Brain Res Bull 83(5):284–291. https://doi.org/10.1016/j.brainresbull.2010.08.002

    Article  CAS  PubMed  Google Scholar 

  10. Krames ES (2014) The role of the dorsal root ganglion in the development of neuropathic pain. Pain Med (Malden Mass) 15(10):1669–1685. https://doi.org/10.1111/pme.12413

    Article  Google Scholar 

  11. Wang K, Wang S, Chen Y, Wu D, Hu X, Lu Y, Wang L, Bao L, Li C, Zhang X (2021) Single-cell transcriptomic analysis of somatosensory neurons uncovers temporal development of neuropathic pain. Cell Res 31(8):904–918. https://doi.org/10.1038/s41422-021-00479-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Finnerup NB, Kuner R, Jensen TS (2021) Neuropathic Pain: from mechanisms to treatment. Physiol Rev 101(1):259–301. https://doi.org/10.1152/physrev.00045.2019

    Article  CAS  PubMed  Google Scholar 

  13. Pan Z, Du S, Wang K, Guo X, Mao Q, Feng X, Huang L, Wu S, Hou B, Chang YJ, Liu T, Chen T, Li H, Bachmann T, Bekker A, Hu H, Tao YX (2021) Downregulation of a dorsal Root Ganglion-Specifically enriched long noncoding RNA is required for Neuropathic Pain by negatively regulating RALY-Triggered Ehmt2 expression. Advanced science (Weinheim, Baden-Wurttemberg. Germany) 8(13):e2004515. https://doi.org/10.1002/advs.202004515

    Article  CAS  Google Scholar 

  14. Jiang X, Stockwell BR, Conrad M (2021) Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol 22(4):266–282. https://doi.org/10.1038/s41580-020-00324-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yao MY, Liu T, Zhang L, Wang MJ, Yang Y, Gao J (2021) Role of ferroptosis in neurological diseases. Neurosci Lett 747:135614. https://doi.org/10.1016/j.neulet.2020.135614

    Article  CAS  PubMed  Google Scholar 

  16. Guo Y, Du J, Xiao C, Xiang P, Deng Y, Hei Z, Li X (2021) Inhibition of ferroptosis-like cell death attenuates neuropathic pain reactions induced by peripheral nerve injury in rats. Eur J Pain 25(6):1227–1240. https://doi.org/10.1002/ejp.1737

    Article  CAS  PubMed  Google Scholar 

  17. Wang H, Huo X, Han C, Ning J, Chen H, Li B, Liu J, Ma W, Li Q, Yu Y, Shi K (2021) Ferroptosis is involved in the development of neuropathic pain and allodynia. Mol Cell Biochem 476(8):3149–3161. https://doi.org/10.1007/s11010-021-04138-w

    Article  CAS  PubMed  Google Scholar 

  18. Kang R, Kroemer G, Tang D (2019) The tumor suppressor protein p53 and the ferroptosis network. Free Radic Biol Med 133:162–168. https://doi.org/10.1016/j.freeradbiomed.2018.05.074

    Article  CAS  PubMed  Google Scholar 

  19. Gerner EW, Meyskens FL Jr (2004) Polyamines and cancer: old molecules, new understanding. Nat Rev Cancer 4(10):781–792. https://doi.org/10.1038/nrc1454

    Article  CAS  PubMed  Google Scholar 

  20. Ou Y, Wang SJ, Li D, Chu B, Gu W (2016) Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses. Proc Natl Acad Sci USA 113(44):E6806–e6812. https://doi.org/10.1073/pnas.1607152113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang H, Deng T, Liu R, Ning T, Yang H, Liu D, Zhang Q, Lin D, Ge S, Bai M, Wang X, Zhang L, Li H, Yang Y, Ji Z, Wang H, Ying G, Ba Y (2020) CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Mol Cancer 19(1):43. https://doi.org/10.1186/s12943-020-01168-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhao J, Wu Y, Liang S, Piao X (2022) Activation of SSAT1/ALOX15 Axis aggravates cerebral Ischemia/Reperfusion Injury via triggering neuronal ferroptosis. Neuroscience 485:78–90. https://doi.org/10.1016/j.neuroscience.2022.01.017

    Article  CAS  PubMed  Google Scholar 

  23. Li G, Li X, Dong J, Han Y (2021) Electroacupuncture ameliorates cerebral ischemic Injury by inhibiting ferroptosis. Front Neurol 12:619043. https://doi.org/10.3389/fneur.2021.619043

    Article  PubMed  PubMed Central  Google Scholar 

  24. Liang R, Tang Q, Song W, Zhang M, Teng L, Kang Y, Zhu L (2021) Electroacupuncture Preconditioning Reduces Oxidative Stress in the Acute Phase of Cerebral Ischemia-Reperfusion in Rats by Regulating Iron Metabolism Pathways. Evidence-based complementary and alternative medicine: eCAM 2021:3056963. doi:https://doi.org/10.1155/2021/3056963

  25. Zhang Y, Zheng L, Deng H, Feng D, Hu S, Zhu L, Xu W, Zhou W, Wang Y, Min K, Zhou Q, Chen Y, Zhou H, Yang H, Lv X (2022) Electroacupuncture alleviates LPS-Induced ARDS through α7 nicotinic acetylcholine receptor-mediated inhibition of ferroptosis. Front Immunol 13:832432. https://doi.org/10.3389/fimmu.2022.832432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bennett GJ, Xie YK (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33(1):87–107. https://doi.org/10.1016/0304-3959(88)90209-6

    Article  PubMed  Google Scholar 

  27. Zhou M, Zhang Q, Huo M, Song H, Chang H, Cao J, Fang Y, Zhang D (2023) The mechanistic basis for the effects of electroacupuncture on neuropathic pain within the central nervous system. Biomed pharmacotherapy = Biomedecine pharmacotherapie 161:114516. https://doi.org/10.1016/j.biopha.2023.114516

    Article  CAS  Google Scholar 

  28. Yan LP, Wu XT, Yin ZY, Ma C (2011) [Effect of electroacupuncture on the levels of amino acid neurotransmitters in the spinal cord in rats with chronic constrictive injury]. Zhen ci yan jiu = Acupuncture research 36(5):353–356

    CAS  PubMed  Google Scholar 

  29. Zhu H, Xiang HC, Li HP, Lin LX, Hu XF, Zhang H, Meng WY, Liu L, Chen C, Shu Y, Zhang RY, Zhang P, Si JQ, Li M (2019) Inhibition of GABAergic neurons and excitation of glutamatergic neurons in the Ventrolateral Periaqueductal Gray Participate in Electroacupuncture Analgesia mediated by cannabinoid receptor. Front NeuroSci 13:484. https://doi.org/10.3389/fnins.2019.00484

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhang XH, Feng CC, Pei LJ, Zhang YN, Chen L, Wei XQ, Zhou J, Yong Y, Wang K (2021) Electroacupuncture attenuates Neuropathic Pain and Comorbid negative behavior: the involvement of the dopamine system in the Amygdala. Front NeuroSci 15:657507. https://doi.org/10.3389/fnins.2021.657507

    Article  PubMed  PubMed Central  Google Scholar 

  31. Jiang Z, Li Y, Wang Q, Fang Z, Deng J, Zhang X, Shen B, Wu Z, Yang Q, Xiong L (2022) Combined-Acupoint Electroacupuncture Induces Better Analgesia via Activating the Endocannabinoid System in the Spinal Cord. Neural plasticity 2022:7670629. doi:https://doi.org/10.1155/2022/7670629

  32. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53(1):55–63. https://doi.org/10.1016/0165-0270(94)90144-9

    Article  CAS  PubMed  Google Scholar 

  33. Wei JA, Hu X, Zhang B, Liu L, Chen K, So KF, Li M, Zhang L (2021) Electroacupuncture activates inhibitory neural circuits in the somatosensory cortex to relieve neuropathic pain. iScience 24(2):102066. https://doi.org/10.1016/j.isci.2021.102066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B 3rd, Stockwell BR (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149(5):1060–1072. https://doi.org/10.1016/j.cell.2012.03.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jensen TS, Finnerup NB (2014) Allodynia and hyperalgesia in neuropathic pain: clinical manifestations and mechanisms. Lancet Neurol 13(9):924–935. https://doi.org/10.1016/s1474-4422(14)70102-4

    Article  PubMed  Google Scholar 

  36. Lv ZT, Shen LL, Zhu B, Zhang ZQ, Ma CY, Huang GF, Yin J, Yu LL, Yu SY, Ding MQ, Li J, Yuan XC, He W, Jing XH, Li M (2019) Effects of intensity of electroacupuncture on chronic pain in patients with knee osteoarthritis: a randomized controlled trial. Arthritis Res therapy 21(1):120. https://doi.org/10.1186/s13075-019-1899-6

    Article  Google Scholar 

  37. Lee J, Shin JS, Lee YJ, Kim MR, Ahn YJ, Park KB, Kropf MA, Shin BC, Lee MS, Ha IH (2015) Effects of Shinbaro pharmacopuncture in sciatic pain patients with lumbar disc herniation: study protocol for a randomized controlled trial. Trials 16:455. https://doi.org/10.1186/s13063-015-0993-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shin JS, Lee J, Lee YJ, Kim MR, Ahn YJ, Park KB, Shin BC, Lee MS, Ha IH (2016) Long-term course of alternative and integrative therapy for lumbar disc herniation and risk factors for surgery: a prospective observational 5-Year Follow-Up study. Spine 41(16):E955–e963. https://doi.org/10.1097/brs.0000000000001494

    Article  PubMed  Google Scholar 

  39. Wei S, Chang S, Dong Y, Xu L, Yuan X, Jia H, Zhang J, Liang L (2021) Electro-acupuncture suppresses AXL expression in dorsal Root ganglion neurons and enhances analgesic effect of AXL inhibitor in spinal nerve Ligation Induced-Neuropathic Pain rats. Neurochem Res 46(3):504–512. https://doi.org/10.1007/s11064-020-03185-x

    Article  CAS  PubMed  Google Scholar 

  40. Gong D, Yu X, Jiang M, Li C, Wang Z (2021) Differential Proteomic Analysis of the Hippocampus in Rats with Neuropathic Pain to Investigate the Use of Electroacupuncture in Relieving Mechanical Allodynia and Cognitive Decline. Neural plasticity 2021:5597163. doi:https://doi.org/10.1155/2021/5597163

  41. Cui ZK, Li SY, Liao K, Wang ZJ, Guo YL, Tang LS, Tang SB, Ma JH, Chen JS (2021) Characteristics of neural growth and cryopreservation of the dorsal root ganglion using three-dimensional collagen hydrogel culture versus conventional culture. Neural regeneration research 16(9):1856–1864. https://doi.org/10.4103/1673-5374.306097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ma J, Patil V, Pandit A, Quinlan LR, Finn DP, Grad S, Alini M, Peroglio M (2021) In Vitro Model to investigate communication between dorsal Root Ganglion and spinal cord glia. Int J Mol Sci 22(18). https://doi.org/10.3390/ijms22189725

  43. Guo TT, Zhao Y, Huang WX, Zhang T, Zhao LL, Gu XS, Zhou SL (2022) Silencing the enhancer of zeste homologue 2, Ezh2, represses axon regeneration of dorsal root ganglion neurons. Neural regeneration research 17(7):1518–1525. https://doi.org/10.4103/1673-5374.330623

    Article  CAS  PubMed  Google Scholar 

  44. García G, Martínez-Rojas VA, Murbartián J (2021) TREK-1 potassium channels participate in acute and long-lasting nociceptive hypersensitivity induced by formalin in rats. Behav Brain Res 413:113446. https://doi.org/10.1016/j.bbr.2021.113446

    Article  CAS  PubMed  Google Scholar 

  45. Li J, Chen Y, Liu J, Zhang D, Liang P, Lu P, Shen J, Miao C, Zuo Y, Zhou C (2021) Elevated expression and activity of Sodium Leak Channel contributes to neuronal sensitization of Inflammatory Pain in rats. Front Mol Neurosci 14:723395. https://doi.org/10.3389/fnmol.2021.723395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen W, Lu Z (2017) Upregulated TLR3 promotes Neuropathic Pain by regulating Autophagy in Rat with L5 spinal nerve ligation model. Neurochem Res 42(2):634–643. https://doi.org/10.1007/s11064-016-2119-2

    Article  CAS  PubMed  Google Scholar 

  47. Yin Y, Yi MH, Kim DW (2018) Impaired Autophagy of GABAergic Interneurons in Neuropathic Pain. Pain research & management 2018:9185368. doi:https://doi.org/10.1155/2018/9185368

  48. Kahya MC, Nazıroğlu M, Övey İS (2017) Modulation of Diabetes-Induced oxidative stress, apoptosis, and ca(2+) entry through TRPM2 and TRPV1 channels in dorsal Root Ganglion and Hippocampus of Diabetic rats by melatonin and selenium. Mol Neurobiol 54(3):2345–2360. https://doi.org/10.1007/s12035-016-9727-3

    Article  CAS  PubMed  Google Scholar 

  49. Xiao HS, Huang QH, Zhang FX, Bao L, Lu YJ, Guo C, Yang L, Huang WJ, Fu G, Xu SH, Cheng XP, Yan Q, Zhu ZD, Zhang X, Chen Z, Han ZG, Zhang X (2002) Identification of gene expression profile of dorsal root ganglion in the rat peripheral axotomy model of neuropathic pain. Proc Natl Acad Sci USA 99(12):8360–8365. https://doi.org/10.1073/pnas.122231899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chandran V, Coppola G, Nawabi H, Omura T, Versano R, Huebner EA, Zhang A, Costigan M, Yekkirala A, Barrett L, Blesch A, Michaelevski I, Davis-Turak J, Gao F, Langfelder P, Horvath S, He Z, Benowitz L, Fainzilber M, Tuszynski M, Woolf CJ, Geschwind DH (2016) A Systems-Level analysis of the peripheral nerve intrinsic axonal growth program. Neuron 89(5):956–970. https://doi.org/10.1016/j.neuron.2016.01.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Costigan M, Befort K, Karchewski L, Griffin RS, D’Urso D, Allchorne A, Sitarski J, Mannion JW, Pratt RE, Woolf CJ (2002) Replicate high-density rat genome oligonucleotide microarrays reveal hundreds of regulated genes in the dorsal root ganglion after peripheral nerve injury. BMC Neurosci 3:16. https://doi.org/10.1186/1471-2202-3-16

    Article  PubMed  PubMed Central  Google Scholar 

  52. Xu W, Liu W, Yu W (2019) The involvement of iron responsive element (-) divalent metal transporter 1-mediated the spinal iron overload via CXCL10/CXCR3 pathway in neuropathic pain in rats. Neurosci Lett 694:154–160. https://doi.org/10.1016/j.neulet.2018.12.001

    Article  CAS  PubMed  Google Scholar 

  53. Valek L, Häussler A, Dröse S, Eaton P, Schröder K, Tegeder I (2017) Redox-guided axonal regrowth requires cyclic GMP dependent protein kinase 1: implication for neuropathic pain. Redox Biol 11:176–191. https://doi.org/10.1016/j.redox.2016.12.004

    Article  CAS  PubMed  Google Scholar 

  54. Bae C, Wang J, Shim HS, Tang SJ, Chung JM, La JH (2018) Mitochondrial superoxide increases excitatory synaptic strength in spinal dorsal horn neurons of neuropathic mice. Mol Pain 14:1744806918797032. https://doi.org/10.1177/1744806918797032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Deng YF, Xiang P, Du JY, Liang JF, Li X (2023) Intrathecal liproxstatin-1 delivery inhibits ferroptosis and attenuates mechanical and thermal hypersensitivities in rats with complete Freund’s adjuvant-induced inflammatory pain. Neural regeneration research 18(2):456–462. https://doi.org/10.4103/1673-5374.346547

    Article  PubMed  Google Scholar 

  56. Zhang Y, Chi D (2018) Overexpression of SIRT2 alleviates Neuropathic Pain and Neuroinflammation through Deacetylation of transcription factor nuclear Factor-Kappa B. Inflammation 41(2):569–578. https://doi.org/10.1007/s10753-017-0713-3

    Article  CAS  PubMed  Google Scholar 

  57. Li Y, Yin C, Li X, Liu B, Wang J, Zheng X, Shao X, Liang Y, Du J, Fang J, Liu B (2019) Electroacupuncture alleviates Paclitaxel-Induced Peripheral Neuropathic Pain in rats via suppressing TLR4 signaling and TRPV1 upregulation in sensory neurons. Int J Mol Sci 20(23). https://doi.org/10.3390/ijms20235917

  58. Bae DH, Lane DJR, Jansson PJ, Richardson DR (2018) The old and new biochemistry of polyamines. Biochim et Biophys acta Gen Subj 1862(9):2053–2068. https://doi.org/10.1016/j.bbagen.2018.06.004

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks to the funding support from the National Natural Science Foundation of China.

Funding

This work was supported by a grant from the National Natural Science Foundation of China (No. 81973949 and 81804187).

Author information

Authors and Affiliations

Authors

Contributions

Man Li, Yongmin Liu, and Caihua Wu conceived and designed the research and drafted and revised the manuscript. Kexing Wan and Min Jia performed the experiments. Hong Zhang, Yuye Lan, and Suixi Wang helped to analyze the data and interpreted the results of the experiments. Kexing Wan prepared the figures. Lei Pei and He Zhu guided the experimental design. Kailing Zhang, Zixiao Wang, Xunan Zheng, and Yi Luo provided experimental help. All authors approved the final edited version of the manuscript.

Corresponding authors

Correspondence to Caihua Wu, Yongmin Liu or Man Li.

Ethics declarations

Ethics Approval

All experimental procedures were carried out following the ethical guidelines of the International Association for the Study of Pain (Zimmermann 1983) and approved by the Institutional Animal Care and Use Committee (IACUC) of Huazhong University of Science and Technology.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, K., Jia, M., Zhang, H. et al. Electroacupuncture Alleviates Neuropathic Pain by Suppressing Ferroptosis in Dorsal Root Ganglion via SAT1/ALOX15 Signaling. Mol Neurobiol 60, 6121–6132 (2023). https://doi.org/10.1007/s12035-023-03463-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03463-z

Keywords

Navigation