Skip to main content

Advertisement

Log in

LncRNA XIST Exacerbates Oxygen-Glucose Deprivation/Reoxygenation-Induced Cerebral Injury Through the miR-25-3p/TRAF3 Axis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Ischemic stroke causes lethal damage to the brain. Identifying key regulators of OGD/R-induced cerebral injury is important for developing novel therapies for ischemic stroke. HMC3 and SH-SY5Y cells were treated with OGD/R as an in vitro ischemic stroke model. Cell viability and apoptosis were determined via CCK-8 assay and flow cytometry. Inflammatory cytokines were examined by ELISA. Luciferase activity was measured for evaluating the interaction of XIST, miR-25-3p, and TRAF3. Bcl-2, Bax, Bad, cleaved-caspase 3, total caspase 3, and TRAF3 were detected via western blotting. HMC3 and SH-SY5Y cells showed increased XIST expression and decreased miR-25-3p expression following OGD/R. Importantly, silencing of XIST and overexpression of miR-25-3p reduced apoptosis and inflammatory response following OGD/R. Furthermore, XIST worked as a miR-25-3p sponge, and miR-25-3p targeted TRAF3 to suppress its expression. Moreover, the knockdown of TRAF3 ameliorated OGD/R-induced injury. Loss of XIST-mediated protective effects was reversed by overexpression of TRAF3. LncRNA XIST exacerbates OGD/R-induced cerebral damage via sponging miR-25-3p and enhancing TRAF3 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Campbell BCV, Khatri P (2020) Stroke. Lancet 396(10244):129–142. https://doi.org/10.1016/S0140-6736(20)31179-X

    Article  PubMed  Google Scholar 

  2. Campbell BCV, De Silva DA, Macleod MR, Coutts SB, Schwamm LH, Davis SM, Donnan GA (2019) Ischaemic stroke. Nat Rev Dis Primers 5(1):70. https://doi.org/10.1038/s41572-019-0118-8

    Article  PubMed  Google Scholar 

  3. Kalogeris T, Baines CP, Krenz M, Korthuis RJ (2012) Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol 298:229–317. https://doi.org/10.1016/B978-0-12-394309-5.00006-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lin L, Wang X, Yu Z (2016) Ischemia-reperfusion injury in the brain: mechanisms and potential therapeutic strategies. Biochem Pharmacol 5(4):213. https://doi.org/10.4172/2167-0501.1000213

    Article  CAS  Google Scholar 

  5. Dykstra-Aiello C, Jickling GC, Ander BP, Shroff N, Zhan X, Liu D, Hull H, Orantia M et al (2016) Altered expression of long noncoding RNAs in blood after ischemic stroke and proximity to putative stroke risk loci. Stroke 47(12):2896–2903. https://doi.org/10.1161/STROKEAHA.116.013869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang J, Yuan L, Zhang X, Hamblin MH, Zhu T, Meng F, Li Y, Chen YE et al (2016) Altered long non-coding RNA transcriptomic profiles in brain microvascular endothelium after cerebral ischemia. Exp Neurol 277:162–170. https://doi.org/10.1016/j.expneurol.2015.12.014

    Article  CAS  PubMed  Google Scholar 

  7. Wang J, Cao B, Han D, Sun M, Feng J (2017) Long non-coding RNA H19 induces cerebral ischemia reperfusion injury via activation of autophagy. Aging Dis 8(1):71–84. https://doi.org/10.14336/AD.2016.0530

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhang X, Tang X, Liu K, Hamblin MH, Yin KJ (2017) Long noncoding RNA Malat1 regulates cerebrovascular pathologies in ischemic stroke. J Neurosci 37(7):1797–1806. https://doi.org/10.1523/JNEUROSCI.3389-16.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang X, Wang F, Feng Z, Cai J, Liu J (2021) The association between levels of serum homocysteine and chronic heart failure: a protocol for systematic review and meta-analysis. Medicine 100(5):e24117. https://doi.org/10.1097/MD.0000000000024117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang C, Dong J, Sun J, Huang S, Wu F, Zhang X, Pang D, Fu Y et al (2021) Silencing of lncRNA XIST impairs angiogenesis and exacerbates cerebral vascular injury after ischemic stroke. Mol Ther Nucleic Acids 26:148–160. https://doi.org/10.1016/j.omtn.2021.06.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fernandes JCR, Acuna SM, Aoki JI, Floeter-Winter LM, Muxel SM (2019) Long non-coding RNAs in the regulation of gene expression: physiology and disease. Non-coding. RNA 5(1):17. https://doi.org/10.3390/ncrna5010017

    Article  CAS  Google Scholar 

  12. Rink C, Khanna S (2011) MicroRNA in ischemic stroke etiology and pathology. Physiol Genomics 43(10):521–528. https://doi.org/10.1152/physiolgenomics.00158.2010

    Article  CAS  PubMed  Google Scholar 

  13. Yin KJ, Deng Z, Hamblin M, Xiang Y, Huang H, Zhang J, Jiang X, Wang Y et al (2010) Peroxisome proliferator-activated receptor delta regulation of miR-15a in ischemia-induced cerebral vascular endothelial injury. J Neurosci 30(18):6398–6408. https://doi.org/10.1523/JNEUROSCI.0780-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yin KJ, Deng Z, Huang H, Hamblin M, Xie C, Zhang J, Chen YE (2010) miR-497 regulates neuronal death in mouse brain after transient focal cerebral ischemia. Neurobiol Dis 38(1):17–26. https://doi.org/10.1016/j.nbd.2009.12.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang W, Sun G, Zhang L, Shi L, Zeng Y (2014) Circulating microRNAs as novel potential biomarkers for early diagnosis of acute stroke in humans. J Stroke Cerebrovasc Dis 23(10):2607–2613. https://doi.org/10.1016/j.jstrokecerebrovasdis.2014.06.002

    Article  PubMed  Google Scholar 

  16. Kuang Y, Zheng X, Zhang L, Ai X, Venkataramani V, Kilic E, Hermann DM, Majid A et al (2020) Adipose-derived mesenchymal stem cells reduce autophagy in stroke mice by extracellular vesicle transfer of miR-25. J Extracell Vesicles 10(1):e12024. https://doi.org/10.1002/jev2.12024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dai Q, Ma Y, Xu Z, Zhang L, Yang H, Liu Q, Wang J (2021) Downregulation of circular RNA HECTD1 induces neuroprotection against ischemic stroke through the microRNA-133b/TRAF3 pathway. Life Sci 264:118626. https://doi.org/10.1016/j.lfs.2020.118626

    Article  CAS  PubMed  Google Scholar 

  18. Donkor ES (2018) Stroke in the 21(st) century: a snapshot of the burden, epidemiology, and quality of life. Stroke Res Treat 2018:3238165. https://doi.org/10.1155/2018/3238165

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bhaskar S, Stanwell P, Cordato D, Attia J, Levi C (2018) Reperfusion therapy in acute ischemic stroke: dawn of a new era? BMC Neurol 18(1):8. https://doi.org/10.1186/s12883-017-1007-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huarte M (2015) The emerging role of lncRNAs in cancer. Nat Med 21(11):1253–1261. https://doi.org/10.1038/nm.3981

    Article  CAS  PubMed  Google Scholar 

  21. Guo J, Liu Z, Gong R (2019) Long noncoding RNA: an emerging player in diabetes and diabetic kidney disease. Clin Sci 133(12):1321–1339. https://doi.org/10.1042/CS20190372

    Article  CAS  Google Scholar 

  22. Riva P, Ratti A, Venturin M (2016) The long non-coding RNAs in neurodegenerative diseases: novel mechanisms of pathogenesis. Curr Alzheimer Res 13(11):1219–1231. https://doi.org/10.2174/1567205013666160622112234

    Article  CAS  PubMed  Google Scholar 

  23. Fan J, Saft M, Sadanandan N, Gonzales-Portillo B, Park YJ, Sanberg PR, Borlongan CV, Luo Y (2020) LncRNAs stand as potent biomarkers and therapeutic targets for stroke. Front Aging Neurosci 12:594571. https://doi.org/10.3389/fnagi.2020.594571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang J, Cao B, Zhao H, Gao Y, Luo Y, Chen Y, Feng J (2019) Long noncoding RNA H19 prevents neurogenesis in ischemic stroke through p53/Notch1 pathway. Brain Res Bull 150:111–117. https://doi.org/10.1016/j.brainresbull.2019.05.009

    Article  CAS  PubMed  Google Scholar 

  25. Feng L, Guo J, Ai F (2019) Circulating long noncoding RNA ANRIL downregulation correlates with increased risk, higher disease severity and elevated pro-inflammatory cytokines in patients with acute ischemic stroke. J Clin Lab Anal 33(1):e22629. https://doi.org/10.1002/jcla.22629

    Article  CAS  PubMed  Google Scholar 

  26. Chen F, Zhang L, Wang E, Zhang C, Li X (2018) LncRNA GAS5 regulates ischemic stroke as a competing endogenous RNA for miR-137 to regulate the Notch1 signaling pathway. Biochem Biophys Res Commun 496(1):184–190. https://doi.org/10.1016/j.bbrc.2018.01.022

    Article  CAS  PubMed  Google Scholar 

  27. Wang Y, Li Y, Ma C, Zhou T, Lu C, Ding L, Li L (2021) LncRNA XIST promoted OGD-induced neuronal injury through modulating/miR-455-3p/TIPARP axis. Neurochem Res 46(6):1447–1456. https://doi.org/10.1007/s11064-021-03286-1

    Article  CAS  PubMed  Google Scholar 

  28. Khoshnam SE, Winlow W, Farbood Y, Moghaddam HF, Farzaneh M (2017) Emerging roles of microRNAs in ischemic stroke: as possible therapeutic agents. J Stroke 19(2):166–187. https://doi.org/10.5853/jos.2016.01368

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sepramaniam S, Tan JR, Tan KS, DeSilva DA, Tavintharan S, Woon FP, Wang CW, Yong FL et al (2014) Circulating microRNAs as biomarkers of acute stroke. Int J Mol Sci 15(1):1418–1432. https://doi.org/10.3390/ijms15011418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kartha RV, Subramanian S (2014) Competing endogenous RNAs (ceRNAs): new entrants to the intricacies of gene regulation. Front Genet 5:8. https://doi.org/10.3389/fgene.2014.00008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu H, Deng H, Zhao Y, Li C, Liang Y (2018) LncRNA XIST/miR-34a axis modulates the cell proliferation and tumor growth of thyroid cancer through MET-PI3K-AKT signaling. J Exp Clin Cancer Res 37(1):279. https://doi.org/10.1186/s13046-018-0950-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu TT, Li R, Liu X, Zhou XJ, Huo C, Li JP, Qu YQ (2021) LncRNA XIST acts as a MicroRNA-520 sponge to regulate the Cisplatin resistance in NSCLC cells by mediating BAX through CeRNA network. Int J Med Sci 18(2):419–431. https://doi.org/10.7150/ijms.49730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang J, Fu Z, Wang M, Lu J, Yang H, Lu H (2021) Knockdown of XIST attenuates cerebral ischemia/reperfusion injury through regulation of miR-362/ROCK2 axis. Neurochem Res 46(8):2167–2180. https://doi.org/10.1007/s11064-021-03354-6

    Article  CAS  PubMed  Google Scholar 

  34. Hoebe K, Beutler B (2006) TRAF3: a new component of the TLR-signaling apparatus. Trends Mol Med 12(5):187–189. https://doi.org/10.1016/j.molmed.2006.03.008

    Article  CAS  PubMed  Google Scholar 

  35. Cullell N, Muino E, Carrera C, Torres N, Krupinski J, Fernandez-Cadenas I (2017) Role of TRAF3 in neurological and cardiovascular diseases: an overview of recent studies. Biomol Concepts 8(3-4):197–202. https://doi.org/10.1515/bmc-2017-0008

    Article  CAS  PubMed  Google Scholar 

  36. Zhou Y, Tao T, Liu G, Gao X, Gao Y, Zhuang Z, Lu Y, Wang H et al (2021) TRAF3 mediates neuronal apoptosis in early brain injury following subarachnoid hemorrhage via targeting TAK1-dependent MAPKs and NF-kappaB pathways. Cell Death Dis 12(1):10. https://doi.org/10.1038/s41419-020-03278-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fochi S, Bergamo E, Serena M, Mutascio S, Journo C, Mahieux R, Ciminale V, Bertazzoni U et al (2019) TRAF3 is required for NF-kappaB pathway activation mediated by HTLV tax proteins. Front Microbiol 10:1302. https://doi.org/10.3389/fmicb.2019.01302

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Hainan Provincial Cerebrovascular Disease Clinical Medical Center.

Author information

Authors and Affiliations

Authors

Contributions

Guarantor of integrity of the entire study: Ying Xia; study concepts: You Li; study design: You Li; definition of intellectual content: Ying Xia; literature research: You Li, Ji-Kun Zhang; experimental studies: You Li, Ji-Kun Zhang, Zheng-Tao Yu, Jun-Wen Jiang; data acquisition: Ji-Kun Zhang, Hong Tang; data analysis: You Li, Ji-Kun Zhang, Guo-Long Tu; statistical analysis: Ji-Kun Zhang, Jun-Wen Jiang; manuscript preparation: You Li; manuscript editing: You Li; manuscript review: Ying Xia; All the authors approved for the final version.

Corresponding authors

Correspondence to Zheng-Tao Yu or Ying Xia.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhang, JK., Yu, ZT. et al. LncRNA XIST Exacerbates Oxygen-Glucose Deprivation/Reoxygenation-Induced Cerebral Injury Through the miR-25-3p/TRAF3 Axis. Mol Neurobiol 60, 6109–6120 (2023). https://doi.org/10.1007/s12035-023-03450-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03450-4

Keywords

Navigation