Skip to main content

Advertisement

Log in

Knockdown of XIST Attenuates Cerebral Ischemia/Reperfusion Injury Through Regulation of miR-362/ROCK2 Axis

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Long non-coding RNAs (lncRNAs) are considered as critical regulators in the pathogenesis of cerebral ischemia. In this present study, we aimed to investigate the impact and underlying mechanism of lncRNA X-inactive specific transcript (XIST) in cerebral ischemia/reperfusion (I/R) injury. An oxygen-glucose deprivation/reperfusion (OGD/R) model in PC12 cells was applied to mimic cerebral I/R injury in vitro and middle cerebral artery occlusion/reperfusion (MCAO/R) model was performed in mice to mimic cerebral I/R injury in vivo. Real-time PCR, fluorescence in situ hybridization (FISH) assay, and western blotting assay were carried out to detect the expression levels of XIST, miR-362, and Rho-related coiled-coil containing protein kinase 2 (ROCK2). The functional experiments were measured by CCK-8 assay, immumofluorescence assay, ELISA assay, TUNEL, and TTC staining. Results displayed that XIST was elevated in PC12 cells with OGD/R, as well as in the ischemic penumbra of mice with MCAO/R. In vitro, knockdown of XIST facilitated cell survival, inhibited apoptosis, and alleviated inflammation injury in OGDR PC12 cells. In vivo, inhibition of XIST remarkably reduced the neurological impairments, promoted neuron proliferation, and suppressed apoptosis in MCAO mice. Mechanistically, XIST acted as a competing endogenous RNA of miR-362 to regulate the downstream gene ROCK2. In conclusion, depletion of XIST attenuated I/R-induced neurological impairment and inflammatory response via the miR-362/ROCK2 axis. These findings offer a potential novel strategy for ischemic stroke therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Muir KW, Tyrrell P, Sattar N, Warburton E (2007) Inflammation and ischaemic stroke. Curr Opin Neurol 20:334–342

    CAS  PubMed  Google Scholar 

  2. van der Worp HB, van Gijn J (2007) Clinical practice. Acute ischemic stroke. N Engl J Med 357:572–579

    PubMed  Google Scholar 

  3. Ren W, Yang X (2018) Pathophysiology of long non-coding RNAs in ischemic stroke. Front Mol Neurosci 11:96

    PubMed  PubMed Central  Google Scholar 

  4. Fatica A, Bozzoni I (2014) Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet 15:7–21

    CAS  PubMed  Google Scholar 

  5. Geisler S, Coller J (2013) RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts. Nat Rev Mol Cell Biol 14:699–712

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Clark BS, Blackshaw S (2014) Long non-coding RNA-dependent transcriptional regulation in neuronal development and disease. Front Genet 5:164

    PubMed  PubMed Central  Google Scholar 

  7. Dharap A, Nakka VP, Vemuganti R (2012) Effect of focal ischemia on long noncoding RNAs. Stroke 43:2800–2802

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang L, Liu W, Zhang Y, Hu Z, Guo H, Lv J, Du H (2020) Dexmedetomidine had neuroprotective effects on hippocampal neuronal cells via targeting lncRNA SHNG16 mediated microRNA-10b-5p/BDNF axis. Mol Cell Biochem 469:41–51

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang Y, Zhang Y (2020) lncRNA ZFAS1 improves neuronal injury and inhibits inflammation, oxidative stress, and apoptosis by sponging miR-582 and upregulating NOS3 expression in cerebral ischemia/reperfusion isnjury. Inflammation. https://doi.org/10.1007/s10753-020-01212-1

    Article  PubMed  Google Scholar 

  10. Wang H, Zheng X, Jin J, Zheng L, Guan T, Huo Y, Xie S, Wu Y, Chen W (2020) LncRNA MALAT1 silencing protects against cerebral ischemia-reperfusion injury through miR-145 to regulate AQP4. J Biomed Sci 27:40

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Xiang Y, Zhang Y, Xia Y, Zhao H, Liu A, Chen Y (2020) LncRNA MEG3 targeting miR-424-5p via MAPK signaling pathway mediates neuronal apoptosis in ischemic stroke. Aging (Albany NY) 12:3156–3174

    CAS  Google Scholar 

  12. Chen DL, Chen LZ, Lu YX, Zhang DS, Zeng ZL, Pan ZZ, Huang P, Wang FH, Li YH, Ju HQ, Xu RH (2017) Long noncoding RNA XIST expedites metastasis and modulates epithelial-mesenchymal transition in colorectal cancer. Cell Death Dis 8:e3011

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lin B, Xu J, Wang F, Wang J, Zhao H, Feng D (2020) LncRNA XIST promotes myocardial infarction by regulating FOS through targeting miR-101a-3p. Aging 12:7232–7247

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hu WN, Duan ZY, Wang Q, Zhou DH (2019) The suppression of ox-LDL-induced inflammatory response and apoptosis of HUVEC by lncRNA XIAT knockdown via regulating miR-30c-5p/PTEN axis. Eur Rev Med Pharmacol Sci 23:7628–7638

    PubMed  Google Scholar 

  15. Zhou T, Qin G, Yang L, Xiang D, Li S (2019) LncRNA XIST regulates myocardial infarction by targeting miR-130a-3p. J Cell Physiol 234:8659–8667

    CAS  PubMed  Google Scholar 

  16. Hu C, Bai X, Liu C, Hu Z (2019) Long noncoding RNA XIST participates hypoxia-induced angiogenesis in human brain microvascular endothelial cells through regulating miR-485/SOX7 axis. Am J Transl Res 11:6487–6497

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Xiong F, Wei WP, Liu YB, Wang Y, Zhang HY, Liu R (2021) Long noncoding RNA XIST enhances cerebral ischemia-reperfusion injury by regulating miR-486-5p and GAB2. Eur Rev Med Pharmacol Sci 25:2013–2020

    CAS  PubMed  Google Scholar 

  18. Siddeek B, Inoubli L, Lakhdari N, Rachel PB, Fussell KC, Schneider S, Mauduit C, Benahmed M (2014) MicroRNAs as potential biomarkers in diseases and toxicology. Mutat Res Genet Toxicol Environ Mutagen 764–765:46–57

    PubMed  Google Scholar 

  19. Yan H, Rao J, Yuan J, Gao L, Huang W, Zhao L, Ren J (2017) Long non-coding RNA MEG3 functions as a competing endogenous RNA to regulate ischemic neuronal death by targeting miR-21/PDCD4 signaling pathway. Cell Death Dis 8:3211

    PubMed  PubMed Central  Google Scholar 

  20. Wu P, Zuo X, Deng H, Liu X, Liu L, Ji A (2013) Roles of long noncoding RNAs in brain development, functional diversification and neurodegenerative diseases. Brain Res Bull 97:69–80

    CAS  PubMed  Google Scholar 

  21. Liu B, Luo C, Lin H, Ji X, Zhang E, Li X (2020) Long noncoding RNA XIST acts as a ceRNA of miR-362-5p to suppress breast cancer progression. Cancer Biother Radiopharm. https://doi.org/10.1089/cbr.2019.3481

    Article  PubMed  Google Scholar 

  22. Wei X, Wang B, Wang Q, Yang X, Yang Y, Fang Z, Yi C, Shi L, Fan X, Tao J, Guo Y, Song D (2020) MiR-362-5p, which is regulated by long non-coding RNA MBNL1-AS1, promotes the cell proliferation and tumor growth of bladder cancer by targeting QKI. Front Pharmacol 11:164

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Li M, Liu Q, Lei J, Wang X, Chen X, Ding Y (2017) MiR-362-3p inhibits the proliferation and migration of vascular smooth muscle cells in atherosclerosis by targeting ADAMTS1. Biochem Biophys Res Commun 493:270–276

    CAS  PubMed  Google Scholar 

  24. Christensen LL, Tobiasen H, Holm A, Schepeler T, Ostenfeld MS, Thorsen K, Rasmussen MH, Birkenkamp-Demtroeder K, Sieber OM, Gibbs P, Lubinski J, Lamy P, Steering group C, Laurberg S, Oster B, Hansen KQ, Hagemann-Madsen R, Byskov K, Orntoft TF, Andersen CL (2013) MiRNA-362-3p induces cell cycle arrest through targeting of E2F1, USF2 and PTPN1 and is associated with recurrence of colorectal cancer. Int J Cancer 133:67–78

    PubMed  Google Scholar 

  25. Julian L, Olson MF (2014) Rho-associated coiled-coil containing kinases (ROCK): structure, regulation, and functions. Small GTPases 5:e29846

    PubMed  PubMed Central  Google Scholar 

  26. Rubenstein NM, Callahan JA, Lo DH, Firestone GL (2007) Selective glucocorticoid control of Rho kinase isoforms regulate cell–cell interactions. Biochem Biophys Res Commun 354:603–607

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Sebbagh M, Hamelin J, Bertoglio J, Solary E, Breard J (2005) Direct cleavage of ROCK II by granzyme B induces target cell membrane blebbing in a caspase-independent manner. J Exp Med 201:465–471

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Ma Z, Kanai M, Kawamura K, Kaibuchi K, Ye K, Fukasawa K (2006) Interaction between ROCK II and nucleophosmin/B23 in the regulation of centrosome duplication. Mol Cell Biol 26:9016–9034

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20:84–91

    CAS  PubMed  Google Scholar 

  30. Zhang W, Wei R, Zhang L, Tan Y, Qian C (2017) Sirtuin 6 protects the brain from cerebral ischemia/reperfusion injury through NRF2 activation. Neuroscience 366:95–104

    CAS  PubMed  Google Scholar 

  31. Bao MH, Szeto V, Yang BB, Zhu SZ, Sun HS, Feng ZP (2018) Long non-coding RNAs in ischemic stroke. Cell Death Dis 9:281

    PubMed  PubMed Central  Google Scholar 

  32. Vawter MP, Evans S, Choudary P, Tomita H, Meador-Woodruff J, Molnar M, Li J, Lopez JF, Myers R, Cox D, Watson SJ, Akil H, Jones EG, Bunney WE (2004) Gender-specific gene expression in post-mortem human brain: localization to sex chromosomes. Neuropsychopharmacology 29:373–384

    CAS  PubMed  Google Scholar 

  33. Gu S, Xie R, Liu X, Shou J, Gu W, Che X (2017) Long coding RNA XIST contributes to neuronal apoptosis through the downregulation of AKT phosphorylation and is negatively regulated by miR-494 in rat spinal cord injury. Int J Mol Sci 18(4):732

    PubMed Central  Google Scholar 

  34. Li Z, Li X, Chen X, Li S, Ho IHT, Liu X, Chan MTV, Wu WKK (2019) Emerging roles of long non-coding RNAs in neuropathic pain. Cell Prolif 52:e12528

    PubMed  Google Scholar 

  35. Cheng X, Xu J, Yu Z, Xu J, Long H (2020) LncRNA Xist contributes to endogenous neurological repair after chronic compressive spinal cord injury by promoting angiogenesis through the miR-32-5p/Notch-1 axis. Front Cell Dev Biol 8:744

    PubMed  PubMed Central  Google Scholar 

  36. Hu C, Bai X, Liu C, Hu Z (2019) Long noncoding RNA XIST participates hypoxia-induced angiogenesis in human brain microvascular endothelial cells through regulating miR-485/SOX7 axis. Microcirculation. https://doi.org/10.1111/micc.12601

    Article  PubMed  PubMed Central  Google Scholar 

  37. Heidecker B, Lamirault G, Kasper EK, Wittstein IS, Champion HC, Breton E, Russell SD, Hall J, Kittleson MM, Baughman KL, Hare JM (2010) The gene expression profile of patients with new-onset heart failure reveals important gender-specific differences. Eur Heart J 31:1188–1196

    CAS  PubMed  Google Scholar 

  38. Dakterzada F, Targa A, Benitez ID, Romero-ElKhayat L, de Gonzalo-Calvo D, Torres G, Moncusi-Moix A, Huerto R, Sanchez-de-la-Torre M, Barbe F, Pinol-Ripoll G (2020) Identification and validation of endogenous control miRNAs in plasma samples for normalization of qPCR data for Alzheimer’s disease. Alzheimers Res Ther 12:163

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang Z, Chang X, Zhu G, Gao X, Chang L (2020) Depletion of lncRNA MALAT1 inhibited sunitinib resistance through regulating miR-362-3p-mediated G3BP1 in renal cell carcinoma. Cell Cycle 19:2054–2062

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Xie Y, Jia Y, Cuihua X, Hu F, Xue M, Xue Y (2017) Urinary exosomal microRNA profiling in incipient type 2 diabetic kidney disease. J Diabetes Res 2017:6978984

    PubMed  PubMed Central  Google Scholar 

  41. Papa L, Slobounov SM, Breiter HC, Walter A, Bream T, Seidenberg P, Bailes JE, Bravo S, Johnson B, Kaufman D, Molfese DL, Talavage TM, Zhu DC, Knollmann-Ritschel B, Bhomia M (2019) Elevations in microRNA biomarkers in serum are associated with measures of concussion, neurocognitive function, and subconcussive trauma over a single National Collegiate Athletic Association Division I season in collegiate football players. J Neurotrauma 36:1343–1351

    PubMed  PubMed Central  Google Scholar 

  42. Liu DZ, Tian Y, Ander BP, Xu H, Stamova BS, Zhan X, Turner RJ, Jickling G, Sharp FR (2010) Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. J Cereb Blood Flow Metab 30:92–101

    PubMed  Google Scholar 

  43. Chen H, Li X (2019) LncRNA ROR is involved in cerebral hypoxia/reoxygenation-induced injury in PC12 cells via regulating miR-135a-5p/ROCK1/2. Am J Transl Res 11:6145–6158

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Si W, Ye S, Ren Z, Liu X, Wu Z, Li Y, Zhou J, Zhang S, Li Y, Deng R, Chen D (2019) miR335 promotes stress granule formation to inhibit apoptosis by targeting ROCK2 in acute ischemic stroke. Int J Mol Med 43:1452–1466

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Fu, Z., Wang, M. et al. Knockdown of XIST Attenuates Cerebral Ischemia/Reperfusion Injury Through Regulation of miR-362/ROCK2 Axis. Neurochem Res 46, 2167–2180 (2021). https://doi.org/10.1007/s11064-021-03354-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03354-6

Keywords

Navigation