Skip to main content

Advertisement

Log in

Restoration of Adult Neurogenesis by Intranasal Administration of Gangliosides GD3 and GM1 in The Olfactory Bulb of A53T Alpha-Synuclein-Expressing Parkinson’s-Disease Model Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Parkinson's disease (PD) is the second most common neurodegenerative disorder affecting the body and mind of millions of people in the world. As PD progresses, bradykinesia, rigidity, and tremor worsen. These motor symptoms are associated with the neurodegeneration of dopaminergic neurons in the substantia nigra. PD is also associated with non-motor symptoms, including loss of smell (hyposmia), sleep disturbances, depression, anxiety, and cognitive impairment. This broad spectrum of non-motor symptoms is in part due to olfactory and hippocampal dysfunctions. These non-motor functions are suggested to be linked with adult neurogenesis. We have reported that ganglioside GD3 is required to maintain the neural stem cell (NSC) pool in the subventricular zone (SVZ) of the lateral ventricles and the subgranular layer of the dentate gyrus (DG) in the hippocampus. In this study, we used nasal infusion of GD3 to restore impaired neurogenesis in A53T alpha-synuclein-expressing mice (A53T mice). Intriguingly, intranasal GD3 administration rescued the number of bromodeoxyuridine + (BrdU +)/Sox2 + NSCs in the SVZ. Furthermore, the administration of gangliosides GD3 and GM1 increases doublecortin (DCX)-expressing immature neurons in the olfactory bulb, and nasal ganglioside administration recovered the neuronal populations in the periglomerular layer of A53T mice. Given the relevance of decreased ganglioside on olfactory impairment, we discovered that GD3 has an essential role in olfactory functions. Our results demonstrated that intranasal GD3 infusion restored the self-renewal ability of the NSCs, and intranasal GM1 infusion promoted neurogenesis in the adult brain. Using a combination of GD3 and GM1 has the potential to slow down disease progression and rescue dysfunctional neurons in neurodegenerative brains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The authors agree to share information regarding the conduct of this research and the results obtained from this investigation upon written requests from interested investigators. The authors agree to share any animal models, antibodies, and reagents that are employed in this study upon written requests.

References

  1. Svennerholm L (1963) Chromatographic Separation of Human Brain Gangliosides. J Neurochem 10:613–623

    Article  CAS  PubMed  Google Scholar 

  2. The nomenclature of lipids. Recommendations, 1976 IUPAC-IUB Commission on Biochemical Nomenclature (1977) Lipids 12 6 455 468

  3. Wong YC, Krainc D (2017) alpha-synuclein toxicity in neurodegeneration: mechanism and therapeutic strategies. Nat Med 23(2):1–13. https://doi.org/10.1038/nm.4269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nakatani Y, Yanagisawa M, Suzuki Y, Yu RK (2010) Characterization of GD3 ganglioside as a novel biomarker of mouse neural stem cells. Glycobiology 20(1):78–86

    Article  CAS  PubMed  Google Scholar 

  5. Wang J, Yu RK (2013) Interaction of ganglioside GD3 with an EGF receptor sustains the self-renewal ability of mouse neural stem cells in vitro. Proc Natl Acad Sci USA 110(47):19137–19142. https://doi.org/10.1073/pnas.1307224110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang J, Cheng A, Wakade C, Yu RK (2014) Ganglioside GD3 is required for neurogenesis and long-term maintenance of neural stem cells in the postnatal mouse brain. The Journal of neuroscience : the official journal of the Society for Neuroscience 34(41):13790–13800. https://doi.org/10.1523/JNEUROSCI.2275-14.2014

    Article  CAS  PubMed  Google Scholar 

  7. Itokazu Y, Li D, Yu RK (2019) Intracerebroventricular infusion of gangliosides augments the adult neural stem cell pool in mouse brain. ASN Neuro 11:1759091419884859. https://doi.org/10.1177/1759091419884859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tang FL, Wang J, Itokazu Y, Yu RK (2020) Ganglioside GD3 regulates dendritic growth in newborn neurons in adult mouse hippocampus via modulation of mitochondrial dynamics. J Neurochem. https://doi.org/10.1111/jnc.15137

    Article  PubMed  PubMed Central  Google Scholar 

  9. Suzuki Y, Yanagisawa M, Ariga T, Yu RK (2011) Histone acetylation-mediated glycosyltransferase gene regulation in mouse brain during development. J Neurochem 116(5):874–880. https://doi.org/10.1111/j.1471-4159.2010.07042.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Itokazu Y, Fuchigami T, Morgan JC, Yu RK (2021) Intranasal infusion of GD3 and GM1 gangliosides downregulates alpha-synuclein and controls tyrosine hydroxylase gene in a PD model mouse. Mol Ther 29(10):3059–3071. https://doi.org/10.1016/j.ymthe.2021.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Itokazu Y, Tsai YT, Yu RK (2016) Epigenetic regulation of ganglioside expression in neural stem cells and neuronal cells. Glycoconj J. https://doi.org/10.1007/s10719-016-9719-6

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tsai YT, Itokazu Y, Yu RK (2016) GM1 ganglioside is involved in epigenetic activation loci of neuronal cells. Neurochem Res 41(1–2):107–115. https://doi.org/10.1007/s11064-015-1742-7

    Article  CAS  PubMed  Google Scholar 

  13. Tsai YT, Yu RK (2014) Epigenetic activation of mouse ganglioside synthase genes: implications for neurogenesis. J Neurochem 128(1):101–110. https://doi.org/10.1111/jnc.12456

    Article  CAS  PubMed  Google Scholar 

  14. Martinez Z, Zhu M, Han S, Fink AL (2007) GM1 specifically interacts with alpha-synuclein and inhibits fibrillation. Biochemistry 46(7):1868–1877. https://doi.org/10.1021/bi061749a

    Article  CAS  PubMed  Google Scholar 

  15. Agnati LF, Fuxe K, Calza L, Benfenati F, Cavicchioli L, Toffano G, Goldstein M (1983) Gangliosides increase the survival of lesioned nigral dopamine neurons and favour the recovery of dopaminergic synaptic function in striatum of rats by collateral sprouting. Acta Physiol Scand 119(4):347–363. https://doi.org/10.1111/j.1748-1716.1983.tb07363.x

    Article  CAS  PubMed  Google Scholar 

  16. Wu G, Lu ZH, Kulkarni N, Amin R, Ledeen RW (2011) Mice lacking major brain gangliosides develop parkinsonism. Neurochem Res 36(9):1706–1714. https://doi.org/10.1007/s11064-011-0437-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wu G, Lu ZH, Kulkarni N, Ledeen RW (2012) Deficiency of ganglioside GM1 correlates with Parkinson’s disease in mice and humans. J Neurosci Res 90(10):1997–2008. https://doi.org/10.1002/jnr.23090

    Article  CAS  PubMed  Google Scholar 

  18. Ariga T (2014) Pathogenic role of ganglioside metabolism in neurodegenerative diseases. J Neurosci Res 92(10):1227–1242. https://doi.org/10.1002/jnr.23411

    Article  CAS  PubMed  Google Scholar 

  19. Ledeen RW, Wu G (2018) Gangliosides, alpha-synuclein, and parkinson’s disease. Prog Mol Biol Transl Sci 156:435–454. https://doi.org/10.1016/bs.pmbts.2017.12.009

    Article  CAS  PubMed  Google Scholar 

  20. Wu G, Lu ZH, Seo JH, Alselehdar SK, DeFrees S, Ledeen RW (2020) Mice deficient in GM1 manifest both motor and non-motor symptoms of Parkinson’s disease; successful treatment with synthetic GM1 ganglioside. Exp Neurol 329:113284

    CAS  PubMed  Google Scholar 

  21. Schneider JS (2018) Altered expression of genes involved in ganglioside biosynthesis in substantia nigra neurons in Parkinson’s disease. PloS one 13(6):e0199189

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hadaczek P, Wu G, Sharma N, Ciesielska A, Bankiewicz K, Davidow AL, Lu ZH, Forsayeth J, Ledeen RW et al (2015) GDNF signaling implemented by GM1 ganglioside; failure in Parkinson’s disease and GM1-deficient murine model. Exp Neurol 263:177–189. https://doi.org/10.1016/j.expneurol.2014.10.010

    Article  CAS  PubMed  Google Scholar 

  23. Seyfried TN, Choi H, Chevalier A, Hogan D, Akgoc Z, Schneider JS (2018) Sex-related abnormalities in substantia nigra lipids in parkinson’s disease. ASN Neuro 10:1759091418781889. https://doi.org/10.1177/1759091418781889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schneider JS, Yuwiler A (1989) GM1 ganglioside treatment promotes recovery of striatal dopamine concentrations in the mouse model of MPTP-induced parkinsonism. Exp Neurol 105(2):177–183. https://doi.org/10.1016/0014-4886(89)90117-9

    Article  CAS  PubMed  Google Scholar 

  25. Schneider JS, Sendek S, Daskalakis C, Cambi F (2010) GM1 ganglioside in Parkinson’s disease: results of a five year open study. J Neurol Sci 292(1–2):45–51. https://doi.org/10.1016/j.jns.2010.02.009

    Article  CAS  PubMed  Google Scholar 

  26. Schneider JS, Roeltgen DP, Rothblat DS, Chapas-Crilly J, Seraydarian L, Rao J (1995) GM1 ganglioside treatment of Parkinson’s disease: an open pilot study of safety and efficacy. Neurology 45(6):1149–1154. https://doi.org/10.1212/wnl.45.6.1149

    Article  CAS  PubMed  Google Scholar 

  27. Schneider JS, Gollomp SM, Sendek S, Colcher A, Cambi F, Du W (2013) A randomized, controlled, delayed start trial of GM1 ganglioside in treated Parkinson’s disease patients. J Neurol Sci 324(1–2):140–148. https://doi.org/10.1016/j.jns.2012.10.024

    Article  CAS  PubMed  Google Scholar 

  28. Schneider JS, Cambi F, Gollomp SM, Kuwabara H, Brasic JR, Leiby B, Sendek S, Wong DF (2015) GM1 ganglioside in Parkinson’s disease: pilot study of effects on dopamine transporter binding. J Neurol Sci 356(1–2):118–123. https://doi.org/10.1016/j.jns.2015.06.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schneider JS, Aras R, Williams CK, Koprich JB, Brotchie JM, Singh V (2019) GM1 ganglioside modifies alpha-synuclein toxicity and is neuroprotective in a rat alpha-synuclein model of parkinson’s disease. Sci Rep 9(1):8362. https://doi.org/10.1038/s41598-019-42847-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Revunov E, Johnstrom P, Arakawa R, Malmquist J, Jucaite A, Defay T, Takano A, Schou M (2020) First radiolabeling of a ganglioside with a positron emitting radionuclide: in vivo PET demonstrates low exposure of radiofluorinated GM1 in non-human primate brain. ACS Chem Neurosci 11(9):1245–1249. https://doi.org/10.1021/acschemneuro.0c00161

    Article  CAS  PubMed  Google Scholar 

  31. Kumbale R, Frey WH, Wilson S, Rahman YE (1999) GM1 delivery to the CSF via the olfactory pathway. Drug Deliv 6(1):23–30. https://doi.org/10.1080/107175499267129

    Article  CAS  Google Scholar 

  32. Dahlin M, Bjork E (2000) Nasal absorption of (S)-UH-301 and its transport into the cerebrospinal fluid of rats. Int J Pharm 195(1–2):197–205. https://doi.org/10.1016/s0378-5173(99)00392-0

    Article  CAS  PubMed  Google Scholar 

  33. Pires A, Fortuna A, Alves G, Falcao A (2009) Intranasal drug delivery: how, why and what for? J Pharm Pharm Sci 12(3):288–311. https://doi.org/10.18433/j3nc79

    Article  CAS  PubMed  Google Scholar 

  34. Crowe TP, Hsu WH (2022) Evaluation of recent Intranasal drug delivery systems to the central nervous system. Pharmaceutics 14(3):629. https://doi.org/10.3390/pharmaceutics14030629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee MK, Stirling W, Xu Y, Xu X, Qui D, Mandir AS, Dawson TM, Copeland NG, Jenkins NA, Price DL et al (2002) Human alpha-synuclein-harboring familial Parkinson’s disease-linked Ala-53 –> Thr mutation causes neurodegenerative disease with alpha-synuclein aggregation in transgenic mice. Proc Natl Acad Sci USA 99(13):8968–8973. https://doi.org/10.1073/pnas.132197599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. O’Sullivan SS, Williams DR, Gallagher DA, Massey LA, Silveira-Moriyama L, Lees AJ (2008) Nonmotor symptoms as presenting complaints in Parkinson’s disease: a clinicopathological study. Mov Disord 23(1):101–106. https://doi.org/10.1002/mds.21813

    Article  PubMed  Google Scholar 

  37. Tolosa E, Poewe W (2009) Premotor parkinson disease. Neurology 72(7 Suppl):S1. https://doi.org/10.1212/wnl.0b013e318198dace

    Article  PubMed  Google Scholar 

  38. Johnson ME, Bergkvist L, Mercado G, Stetzik L, Meyerdirk L, Wolfrum E, Madaj Z, Brundin P, Wesson DW et al (2020) Deficits in olfactory sensitivity in a mouse model of Parkinson’s disease revealed by plethysmography of odor-evoked sniffing. Sci Rep 10(1):9242. https://doi.org/10.1038/s41598-020-66201-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Paredes MF, Sorrells SF, Cebrian-Silla A, Sandoval K, Qi D, Kelley KW, James D, Mayer S, et al (2018) Does adult neurogenesis persist in the human hippocampus? Cell Stem Cell 23(6):780–781. https://doi.org/10.1016/j.stem.2018.11.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Boldrini M, Fulmore CA, Tartt AN, Simeon LR, Pavlova I, Poposka V, Rosoklija GB, Stankov A, et al (2018) Human hippocampal neurogenesis persists throughout aging. Cell stem cell 22(4):589-599 e585. https://doi.org/10.1016/j.stem.2018.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kempermann G, Gage FH, Aigner L, Song H, Curtis MA, Thuret S, Kuhn HG, Jessberger S, et al (2018) Human adult neurogenesis: evidence and remaining questions. Cell Stem Cell 23(1):25–30. https://doi.org/10.1016/j.stem.2018.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Moreno-Jimenez EP, Flor-Garcia M, Terreros-Roncal J, Rabano A, Cafini F, Pallas-Bazarra N, Avila J, Llorens-Martin M (2019) Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat Med 25(4):554–560. https://doi.org/10.1038/s41591-019-0375-9

    Article  CAS  PubMed  Google Scholar 

  43. Sorrells SF, Paredes MF, Cebrian-Silla A, Sandoval K, Qi D, Kelley KW, James D, Mayer S, (2018) Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature 555(7696):377–381. https://doi.org/10.1038/nature25975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tobin MK, Musaraca K, Disouky A, Shetti A, Bheri A, Honer WG, Kim N, Dawe RJ, et al (2019) Human hippocampal neurogenesis persists in aged adults and Alzheimer’s disease patients. Cell Stem Cell 24(6):974-982 e973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Berger T, Lee H, Young AH, Aarsland D, Thuret S (2020) Adult hippocampal neurogenesis in major depressive disorder and Alzheimer’s disease. Trends Mol Med. https://doi.org/10.1016/j.molmed.2020.03.010

    Article  PubMed  Google Scholar 

  46. Gage FH (2004) Structural plasticity of the adult brain. Dialogues Clin Neurosci 6(2):135–141

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gage FH (2019) Adult neurogenesis in mammals. Science 364(6443):827–828. https://doi.org/10.1126/science.aav6885

    Article  CAS  PubMed  Google Scholar 

  48. Huisman E, Uylings HB, Hoogland PV (2004) A 100% increase of dopaminergic cells in the olfactory bulb may explain hyposmia in Parkinson’s disease. Mov Disord 19(6):687–692. https://doi.org/10.1002/mds.10713

    Article  PubMed  Google Scholar 

  49. van den Berge SA, van Strien ME, Korecka JA, Dijkstra AA, Sluijs JA, Kooijman L, Eggers R, De Filippis L, (2011) The proliferative capacity of the subventricular zone is maintained in the parkinsonian brain. Brain 134(Pt 11):3249–3263. https://doi.org/10.1093/brain/awr256

    Article  PubMed  Google Scholar 

  50. Mundinano IC, Caballero MC, Ordonez C, Hernandez M, DiCaudo C, Marcilla I, Erro ME, Tunon MT, Luquin MR et al (2011) Increased dopaminergic cells and protein aggregates in the olfactory bulb of patients with neurodegenerative disorders. Acta Neuropathol 122(1):61–74. https://doi.org/10.1007/s00401-011-0830-2

    Article  CAS  PubMed  Google Scholar 

  51. Hoglinger GU, Rizk P, Muriel MP, Duyckaerts C, Oertel WH, Caille I, Hirsch EC (2004) Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat Neurosci 7(7):726–735. https://doi.org/10.1038/nn1265

    Article  CAS  PubMed  Google Scholar 

  52. Marxreiter F, Nuber S, Kandasamy M, Klucken J, Aigner R, Burgmayer R, Couillard-Despres S, Riess O, Winkler J, Winner B et al (2009) Changes in adult olfactory bulb neurogenesis in mice expressing the A30P mutant form of alpha-synuclein. Eur J Neurosci 29(5):879–890. https://doi.org/10.1111/j.1460-9568.2009.06641.x

    Article  PubMed  Google Scholar 

  53. Zhang XM, Anwar S, Kim Y, Brown J, Comte I, Cai H, Cai NN, Wade-Martins R, Szele FG et al (2019) The A30P alpha-synuclein mutation decreases subventricular zone proliferation. Hum Mol Genet 28(14):2283–2294. https://doi.org/10.1093/hmg/ddz057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nuber S, Petrasch-Parwez E, Winner B, Winkler J, von Horsten S, Schmidt T, Boy J, Kuhn M, et al (2008) Neurodegeneration and motor dysfunction in a conditional model of Parkinson’s disease. J Neurosci 28(10):2471–2484. https://doi.org/10.1523/JNEUROSCI.3040-07.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Diaz-Moreno M, Hortiguela R, Goncalves A, Garcia-Carpio I, Manich G, Garcia-Bermudez E, Moreno-Estelles M, Eguiluz C, (2013) Abeta increases neural stem cell activity in senescence-accelerated SAMP8 mice. Neurobiol Aging 34(11):2623–2638. https://doi.org/10.1016/j.neurobiolaging.2013.05.011

    Article  CAS  PubMed  Google Scholar 

  56. Ekonomou A, Savva GM, Brayne C, Forster G, Francis PT, Johnson M, Perry EK, Attems J, Somani A, Minger SL, Ballard CG, Medical Research Council Cognitive F, Ageing Neuropathology S 2015 Stage-specific changes in neurogenic and glial markers in Alzheimer's disease Biol Psychiat 77 8 711 719 https://doi.org/10.1016/j.biopsych.2014.05.021

  57. Unger MS, Marschallinger J, Kaindl J, Hofling C, Rossner S, Heneka MT, Van der Linden A, Aigner L (2016) Early changes in hippocampal neurogenesis in transgenic mouse models for Alzheimer’s Disease. Mol Neurobiol 53(8):5796–5806. https://doi.org/10.1007/s12035-016-0018-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Costa G, Sisalli MJ, Simola N, Della Notte S, Casu MA, Serra M, Pinna A, Feliciello A, (2020) Gender Differences in Neurodegeneration, Neuroinflammation and Na(+)-Ca(2+) exchangers in the female A53T transgenic mouse model of parkinson’s disease. Frontiers in aging neuroscience 12:118. https://doi.org/10.3389/fnagi.2020.00118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Farrell KF, Krishnamachari S, Villanueva E, Lou H, Alerte TN, Peet E, Drolet RE, Perez RG (2014) Non-motor parkinsonian pathology in aging A53T alpha-synuclein mice is associated with progressive synucleinopathy and altered enzymatic function. J Neurochem 128(4):536–546. https://doi.org/10.1111/jnc.12481

    Article  CAS  PubMed  Google Scholar 

  60. Li H, Wang H, Zhang L, Wang M, Li Y (2021) Dl-3-n-Butylphthalide alleviates behavioral and cognitive symptoms via modulating mitochondrial dynamics in the A53T-alpha-synuclein mouse model of Parkinson’s disease. Front Neurosci 15:647266

    PubMed  PubMed Central  Google Scholar 

  61. Seo JH, Kang SW, Kim K, Wi S, Lee JW, Cho SR (2020) Environmental enrichment attenuates oxidative stress and alters detoxifying enzymes in an A53T alpha-synuclein transgenic mouse model of Parkinson’s disease. Antioxidants (Basel) 9(10):928

    Article  CAS  PubMed  Google Scholar 

  62. Wi S, Lee JW, Kim M, Park CH, Cho SR (2018) An enriched environment ameliorates oxidative stress and olfactory dysfunction in parkinson’s disease with alpha-synucleinopathy. Cell Transplant 27(5):831–839. https://doi.org/10.1177/0963689717742662

    Article  PubMed  PubMed Central  Google Scholar 

  63. Winner B, Rockenstein E, Lie DC, Aigner R, Mante M, Bogdahn U, Couillard-Despres S, Masliah E, (2008) Mutant alpha-synuclein exacerbates age-related decrease of neurogenesis. Neurobiol Aging 29(6):913–925. https://doi.org/10.1016/j.neurobiolaging.2006.12.016

    Article  CAS  PubMed  Google Scholar 

  64. Zhang S, Xiao Q, Le W (2015) Olfactory dysfunction and neurotransmitter disturbance in olfactory bulb of transgenic mice expressing human A53T mutant alpha-synuclein. PloS one 10(3):e0119928

    Article  PubMed  PubMed Central  Google Scholar 

  65. Yu RK, Nakatani Y, Yanagisawa M (2009) The role of glycosphingolipid metabolism in the developing brain. J Lipid Res 50(Suppl):S440-445

    Article  PubMed  PubMed Central  Google Scholar 

  66. Yu RK, Itokazu Y (2014) Glycolipid and glycoprotein expression during neural development. Advances in neurobiology 9:185–222. https://doi.org/10.1007/978-1-4939-1154-7_9

    Article  PubMed  Google Scholar 

  67. Itokazu Y, Tsai YT, Yu RK (2017) Epigenetic regulation of ganglioside expression in neural stem cells and neuronal cells. Glycoconj J 34(6):749–756. https://doi.org/10.1007/s10719-016-9719-6

    Article  CAS  PubMed  Google Scholar 

  68. Itokazu Y, Wang J, Yu RK (2018) Gangliosides in nerve cell specification. Prog Mol Biol Transl Sci 156:241–263. https://doi.org/10.1016/bs.pmbts.2017.12.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Formisano S, Johnson ML, Lee G, Aloj SM, Edelhoch H (1979) Critical micelle concentrations of gangliosides. Biochemistry 18(6):1119–1124. https://doi.org/10.1021/bi00573a028

    Article  CAS  PubMed  Google Scholar 

  70. Yohe HC, Rosenberg A (1972) Interaction of triiodide anion with gangliosides in aqueous iodine. Chem Phys Lipids 9(4):279–294. https://doi.org/10.1016/0009-3084(72)90015-1

    Article  CAS  PubMed  Google Scholar 

  71. Hanson LR, Fine JM, Svitak AL, Faltesek KA (2013) Intranasal administration of CNS therapeutics to awake mice. J Vis Exp : JoVE (74). https://doi.org/10.3791/4440

  72. Ariga T, Tao RV, Lee BC, Yamawaki M, Yoshino H, Scarsdale NJ, Kasama T, Kushi Y, et al (1994) Glycolipid composition of human cataractous lenses. characterization of Lewisx glycolipids. J Biol Chem 269(4):2667–2675

    Article  CAS  PubMed  Google Scholar 

  73. Ledeen RW, Yu RK (1982) Gangliosides: structure, isolation, and analysis. Methods Enzymol 83:139–191

    Article  CAS  PubMed  Google Scholar 

  74. Ren S, Scarsdale JN, Ariga T, Zhang Y, Klein RA, Hartmann R, Kushi Y, Egge H,  et al (1992) O-acetylated gangliosides in bovine buttermilk. characterization of 7-O-acetyl, 9-O-acetyl, and 7,9-di-O-acetyl GD3. J Biol Chem 267(18):12632–12638

    Article  CAS  PubMed  Google Scholar 

  75. Yu RK, Tsai YT, Ariga T, Yanagisawa M (2011) Structures, biosynthesis, and functions of gangliosides–an overview. J Oleo Sci 60(10):537–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hack MA, Saghatelyan A, de Chevigny A, Pfeifer A, Ashery-Padan R, Lledo PM, Gotz M (2005) Neuronal fate determinants of adult olfactory bulb neurogenesis. Nat Neurosci 8(7):865–872. https://doi.org/10.1038/nn1479

    Article  CAS  PubMed  Google Scholar 

  77. Liu L, Michowski W, Kolodziejczyk A, Sicinski P (2019) The cell cycle in stem cell proliferation, pluripotency and differentiation. Nat Cell Biol 21(9):1060–1067. https://doi.org/10.1038/s41556-019-0384-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dotto GP (2000) p21(WAF1/Cip1): more than a break to the cell cycle? Biochem Biophys Acta 1471(1):M43-56. https://doi.org/10.1016/s0304-419x(00)00019-6

    Article  CAS  PubMed  Google Scholar 

  79. Ledeen RW, Wu G, Lu ZH, Kozireski-Chuback D, Fang Y (1998) The role of GM1 and other gangliosides in neuronal differentiation. Overview and new finding. Ann N Y Acad Sci 845:161–175

    Article  CAS  PubMed  Google Scholar 

  80. Mocchetti I (2005) Exogenous gangliosides, neuronal plasticity and repair, and the neurotrophins. Cell Mol Life Sci 62(19–20):2283–2294. https://doi.org/10.1007/s00018-005-5188-y

    Article  CAS  PubMed  Google Scholar 

  81. Ledeen RW, Wu G (2015) The multi-tasked life of GM1 ganglioside, a true factotum of nature. Trends Biochem Sci 40(7):407–418. https://doi.org/10.1016/j.tibs.2015.04.005

    Article  CAS  PubMed  Google Scholar 

  82. Schengrund CL (2015) Gangliosides: glycosphingolipids essential for normal neural development and function. Trends Biochem Sci 40(7):397–406. https://doi.org/10.1016/j.tibs.2015.03.007

    Article  CAS  PubMed  Google Scholar 

  83. Kaneko N, Sawada M, Sawamoto K (2017) Mechanisms of neuronal migration in the adult brain. J Neurochem 141(6):835–847. https://doi.org/10.1111/jnc.14002

    Article  CAS  PubMed  Google Scholar 

  84. Belvindrah R, Lazarini F, Lledo PM (2009) Postnatal neurogenesis: from neuroblast migration to neuronal integration. Rev Neurosci 20(5–6):331–346. https://doi.org/10.1515/revneuro.2009.20.5-6.331

    Article  PubMed  Google Scholar 

  85. Lazarini F, Lledo PM (2011) Is adult neurogenesis essential for olfaction? Trends Neurosci 34(1):20–30. https://doi.org/10.1016/j.tins.2010.09.006

    Article  CAS  PubMed  Google Scholar 

  86. Capsoni S, Fogli Iseppe A, Casciano F, Pignatelli A (2021) Unraveling the role of dopaminergic and calretinin interneurons in the olfactory bulb. Front Neural Circuits 15:718221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Nagayama S, Homma R, Imamura F (2014) Neuronal organization of olfactory bulb circuits. Front Neural Circuits 8:98. https://doi.org/10.3389/fncir.2014.00098

    Article  PubMed  PubMed Central  Google Scholar 

  88. Akter M, Kaneko N, Sawamoto K (2021) Neurogenesis and neuronal migration in the postnatal ventricular-subventricular zone: similarities and dissimilarities between rodents and primates. Neurosci Res 167:64–69. https://doi.org/10.1016/j.neures.2020.06.001

    Article  PubMed  Google Scholar 

  89. Parrish-Aungst S, Shipley MT, Erdelyi F, Szabo G, Puche AC (2007) Quantitative analysis of neuronal diversity in the mouse olfactory bulb. J Comp Neurol 501(6):825–836. https://doi.org/10.1002/cne.21205

    Article  CAS  PubMed  Google Scholar 

  90. Kohwi M, Petryniak MA, Long JE, Ekker M, Obata K, Yanagawa Y, Rubenstein JL, Alvarez-Buylla A (2007) A subpopulation of olfactory bulb GABAergic interneurons is derived from Emx1- and Dlx5/6-expressing progenitors. J Neurosci 27(26):6878–6891. https://doi.org/10.1523/JNEUROSCI.0254-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Imayoshi I, Sakamoto M, Ohtsuka T, Takao K, Miyakawa T, Yamaguchi M, Mori K, Ikeda T, (2008) Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nat Neurosci 11(10):1153–1161. https://doi.org/10.1038/nn.2185

    Article  CAS  PubMed  Google Scholar 

  92. Sakamoto M, Imayoshi I, Ohtsuka T, Yamaguchi M, Mori K, Kageyama R (2011) Continuous neurogenesis in the adult forebrain is required for innate olfactory responses. Proc Natl Acad Sci U S A 108(20):8479–8484. https://doi.org/10.1073/pnas.1018782108

    Article  PubMed  PubMed Central  Google Scholar 

  93. Bragado Alonso S, Reinert JK, Marichal N, Massalini S, Berninger B, Kuner T, Calegari F (2019) An increase in neural stem cells and olfactory bulb adult neurogenesis improves discrimination of highly similar odorants. EMBO J 38(6):e98791

    Article  PubMed  PubMed Central  Google Scholar 

  94. Machado CF, Reis-Silva TM, Lyra CS, Felicio LF, Malnic B (2018) Buried food-seeking test for the assessment of olfactory detection in mice. Bio Protoc 8(12):e2897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lehmkuhl AM, Dirr ER, Fleming SM (2014) Olfactory assays for mouse models of neurodegenerative disease. J Vis Exp 90:e51804

    Google Scholar 

  96. Yoon YS, You JS, Kim TK, Ahn WJ, Kim MJ, Son KH, Ricarte D, Ortiz D, et al (2022) Senescence and impaired DNA damage responses in alpha-synucleinopathy models. Exp Mol Med 54(2):115–128. https://doi.org/10.1038/s12276-022-00727-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Verma DK, Seo BA, Ghosh A, Ma SX, Hernandez-Quijada K, Andersen JK, Ko HS, Kim YH (2021) Alpha-synuclein preformed fibrils induce cellular senescence in Parkinson’s disease models. Cells 10(7):1694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Riessland M, Kolisnyk B, Kim TW, Cheng J, Ni J, Pearson JA, Park EJ, Dam K, et al (2019) Loss of SATB1 Induces p21-dependent cellular senescence in post-mitotic dopaminergic neurons. Cell stem cell 25(4):514-530 e518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chen F, Liu W, Liu P, Wang Z, Zhou Y, Liu X, Li A (2021) alpha-Synuclein aggregation in the olfactory bulb induces olfactory deficits by perturbing granule cells and granular-mitral synaptic transmission. NPJ Parkinsons Dis 7(1):114. https://doi.org/10.1038/s41531-021-00259-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sanai N, Nguyen T, Ihrie RA, Mirzadeh Z, Tsai HH, Wong M, Gupta N, Berger MS, et al (2011) Corridors of migrating neurons in the human brain and their decline during infancy. Nature 478(7369):382–386. https://doi.org/10.1038/nature10487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wang C, Liu F, Liu YY, Zhao CH, You Y, Wang L, Zhang J, Wei B, et al (2011) Identification and characterization of neuroblasts in the subventricular zone and rostral migratory stream of the adult human brain. Cell Res 21(11):1534–1550. https://doi.org/10.1038/cr.2011.83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bedard A, Parent A (2004) Evidence of newly generated neurons in the human olfactory bulb. Brain Res Dev Brain Res 151(1–2):159–168. https://doi.org/10.1016/j.devbrainres.2004.03.021

    Article  CAS  PubMed  Google Scholar 

  103. Giachino C, Taylor V (2009) Lineage analysis of quiescent regenerative stem cells in the adult brain by genetic labelling reveals spatially restricted neurogenic niches in the olfactory bulb. Eur J Neurosci 30(1):9–24. https://doi.org/10.1111/j.1460-9568.2009.06798.x

    Article  PubMed  Google Scholar 

  104. Moreno-Estelles M, Gonzalez-Gomez P, Hortiguela R, Diaz-Moreno M, San Emeterio J, Carvalho AL, Farinas I, Mira H (2012) Symmetric expansion of neural stem cells from the adult olfactory bulb is driven by astrocytes via WNT7A. Stem cells 30(12):2796–2809. https://doi.org/10.1002/stem.1243

    Article  CAS  PubMed  Google Scholar 

  105. Taguchi T, Ikuno M, Hondo M, Parajuli LK, Taguchi K, Ueda J, Sawamura M, Okuda S, (2020) alpha-Synuclein BAC transgenic mice exhibit RBD-like behaviour and hyposmia: a prodromal Parkinson’s disease model. Brain 143(1):249–265. https://doi.org/10.1093/brain/awz380

    Article  PubMed  Google Scholar 

  106. Braak H, Ghebremedhin E, Rub U, Bratzke H, Del Tredici K (2004) Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 318(1):121–134. https://doi.org/10.1007/s00441-004-0956-9

    Article  PubMed  Google Scholar 

  107. Haehner A, Hummel T, Reichmann H (2011) Olfactory loss in Parkinson’s disease. Parkinsons Dis 2011:450939

    PubMed  PubMed Central  Google Scholar 

  108. Koros C, Simitsi A, Prentakis A, Beratis I, Papadimitriou D, Kontaxopoulou D, Fragkiadaki S, Papagiannakis N, et al (2018) 123I-FP-CIT SPECT [(123) I-2beta-carbomethoxy-3beta-(4-iodophenyl)-N-(3-fluoropropyl) nortropane single photon emission computed tomography] Imaging in a p.A53T alpha-synuclein Parkinson's disease cohort versus Parkinson's disease. Mov Disord 33 (11):1734–1739. https://doi.org/10.1002/mds.27451

  109. Ponsen MM, Stoffers D, Booij J, van Eck-Smit BL, Wolters E, Berendse HW (2004) Idiopathic hyposmia as a preclinical sign of Parkinson’s disease. Ann Neurol 56(2):173–181. https://doi.org/10.1002/ana.20160

    Article  PubMed  Google Scholar 

  110. Itokazu Y, Fuchigami T, Yu RK (2023) Functional Impairment of the Nervous System with Glycolipid Deficiencies. Advances in neurobiology 29:419–448. https://doi.org/10.1007/978-3-031-12390-0_14

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a National Institute of Neurological Disorders and Stroke grant (R01 NS100839 to R.K.Y. and Y.I.) and a Sheffield Memorial Grant of the CSRA Parkinson’s Disease Support Group (to R.K.Y. and Y.I.). We thank Dr. Toshio Ariga and Dr. Dongpei Li for excellent technical support, and Dr. Rhea-Beth Markowitz (Director, Office of Grant Development, Georgia Cancer Center at Augusta University) and Dr. Hannah Soblo (Professional Writing Consultant, Augusta University Center for Writing Excellence) for the editorial excellence and expertise. The authors also wish to acknowledge the excellent infrastructural support of the Department of Neuroscience and Regenerative Medicine (Chair, Dr. Xin-Yun Lu), Medical College of Georgia at Augusta University, which made this investigation possible. This work is dedicated to the memory of Robert K. Yu.

Funding

This work was supported by a National Institute of Neurological Disorders and Stroke grant (R01 NS100839 to R.K.Y. and Y.I.) and a Sheffield Memorial Grant of the CSRA Parkinson’s Disease Support Group (to R.K.Y. and Y.I.).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design, T.F., Y.I., J.C.M. and R.K.Y.; Financial support, Y.I. and R.K.Y.; Administrative support, T.F., Y. I. and R.K.Y.; Provision of study material or patients, T.F., Y. I. and R.K.Y.; Collection and/or assembly of data, T.F. and Y.I.; Data analysis and interpretation, T.F. and Y.I.; Manuscript writing, T.F. and Y.I.; Final approval of manuscript, T.F., Y.I., and J.C.M.

Corresponding author

Correspondence to Yutaka Itokazu.

Ethics declarations

Ethics approval

All animal experiments were approved by the Institutional Animal Care and Use Committee (IACUC) at Augusta University (AU) according to the National Institutes of Health (NIH) guidelines and performed with the approved animal protocols (references AUP 2009–0240 and 2014–0694).

Consent to participate

N/A.

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The gangliosides nomenclature are based on Svennerholm [1] and IUPAC–IUB [2].

Supplementary Information

Additional file 1

(PDF 304 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuchigami, T., Itokazu, Y., Morgan, J.C. et al. Restoration of Adult Neurogenesis by Intranasal Administration of Gangliosides GD3 and GM1 in The Olfactory Bulb of A53T Alpha-Synuclein-Expressing Parkinson’s-Disease Model Mice. Mol Neurobiol 60, 3329–3344 (2023). https://doi.org/10.1007/s12035-023-03282-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03282-2

Keywords

Navigation