Skip to main content
Log in

GM1 Ganglioside is Involved in Epigenetic Activation Loci of Neuronal Cells

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Gangliosides are sialic acid-containing glycosphingolipids that are most abundant in the nerve tissues. The quantity and expression pattern of gangliosides in brain change drastically throughout development and are mainly regulated through stage-specific expression of glycosyltransferase (ganglioside synthase) genes. We previously demonstrated that acetylation of histones H3 and H4 on the N-acetylgalactosaminyltransferase I (GalNAcT, GA2/GM2/GD2/GT2-synthase) gene promoter resulted in recruitment of trans-activation factors. In addition, we reported that epigenetic activation of the GalNAcT gene was also detected as accompanied by an apparent induction of neuronal differentiation in neural stem cells responding to an exogenous supplement of ganglioside GM1. Here, we present evidence supporting the concept that nuclear GM1 is associated with gene regulation in neuronal cells. We found that nuclear GM1 binds acetylated histones on the promoters of the GalNAcT and NeuroD1 genes in differentiated neurons. Our study demonstrates for the first time that GM1 interacts with chromatin via acetylated histones at the nuclear periphery of neuronal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AcH3:

Acetylated histone H3

AcH4:

Acetylated histone H4

ChIP:

Chromatin immunoprecipitation

GalNAcT:

N-acetylgalactosaminyltransferase I (GA2/GM2/GD2/GT2-synthase)

H3K27me3:

Histone H3 with trimethylation on lysine 27

NPC:

Neuronal precursor cell

NSC:

Neural stem cell

ST-II:

Sialyltransferase II (GD3-synthase)

References

  1. IUPAC-IUB Commission on Biochemical Nomenclature (1977) The nomenclature of lipids. Recommendations (1976). Lipids 12:455–468

    Article  Google Scholar 

  2. Svennerholm L (1963) Chromatographic separation of human brain gangliosides. J Neurochem 10:613–623

    Article  CAS  PubMed  Google Scholar 

  3. Hirabayashi Y, Gotoh Y (2010) Epigenetic control of neural precursor cell fate during development. Nat Rev Neurosci 11:377–388

    Article  CAS  PubMed  Google Scholar 

  4. Jobe EM, McQuate AL, Zhao X (2012) Crosstalk among epigenetic pathways regulates neurogenesis. Front Neurosci 6:59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hsieh J, Gage FH (2004) Epigenetic control of neural stem cell fate. Curr Opin Genet Dev 14:461–469

    Article  CAS  PubMed  Google Scholar 

  6. Mehler MF (2008) Epigenetics and the nervous system. Ann Neurol 64:602–617

    Article  CAS  PubMed  Google Scholar 

  7. Hsieh J, Nakashima K, Kuwabara T, Mejia E, Gage FH (2004) Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci USA 101:16659–16664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325:834–840

    Article  CAS  PubMed  Google Scholar 

  9. Jamaladdin S, Kelly RD, O’Regan L, Dovey OM, Hodson GE, Millard CJ, Portolano N, Fry AM, Schwabe JW, Cowley SM (2014) Histone deacetylase (HDAC) 1 and 2 are essential for accurate cell division and the pluripotency of embryonic stem cells. Proc Natl Acad Sci USA 111:9840–9845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Watson PJ, Fairall L, Santos GM, Schwabe JW (2012) Structure of HDAC3 bound to co-repressor and inositol tetraphosphate. Nature 481:335–340

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Millard CJ, Watson PJ, Celardo I, Gordiyenko Y, Cowley SM, Robinson CV, Fairall L, Schwabe JW (2013) Class I HDACs share a common mechanism of regulation by inositol phosphates. Mol Cell 51:57–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ozcan S, Andrali SS, Cantrell JE (2010) Modulation of transcription factor function by O-GlcNAc modification. Biochim Biophys Acta 1799:353–364

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hardiville S, Hart GW (2014) Nutrient regulation of signaling, transcription, and cell physiology by O-GlcNAcylation. Cell Metab 20:208–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lewis BA, Hanover JA (2014) O-GlcNAc and the epigenetic regulation of gene expression. J Biol Chem 289:34440–34448

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lucki NC, Sewer MB (2012) Nuclear sphingolipid metabolism. Annu Rev Physiol 74:131–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang J, Wu G, Miyagi T, Lu ZH, Ledeen RW (2009) Sialidase occurs in both membranes of the nuclear envelope and hydrolyzes endogenous GD1a. J Neurochem 111:547–554

    Article  CAS  PubMed  Google Scholar 

  17. Yu RK, Itokazu Y (2014) Glycolipid and glycoprotein expression during neural development. Adv Neurobiol 9:185–222

    Article  PubMed  Google Scholar 

  18. Saito M, Sugiyama K (2002) Characterization of nuclear gangliosides in rat brain: concentration, composition, and developmental changes. Arch Biochem Biophys 398:153–159

    Article  CAS  PubMed  Google Scholar 

  19. Wu G, Lu ZH, Ledeen RW (1995) GM1 ganglioside in the nuclear membrane modulates nuclear calcium homeostasis during neurite outgrowth. J Neurochem 65:1419–1422

    Article  CAS  PubMed  Google Scholar 

  20. Wu G, Lu ZH, Ledeen RW (1995) Induced and spontaneous neuritogenesis are associated with enhanced expression of ganglioside GM1 in the nuclear membrane. J Neurosci 15:3739–3746

    CAS  PubMed  Google Scholar 

  21. Ledeen RW, Wu G (2015) The multi-tasked life of GM1 ganglioside, a true factotum of nature. Trends Biochem Sci 40:407–418

    Article  CAS  PubMed  Google Scholar 

  22. Xie X, Wu G, Lu ZH, Ledeen RW (2002) Potentiation of a sodium-calcium exchanger in the nuclear envelope by nuclear GM1 ganglioside. J Neurochem 81:1185–1195

    Article  CAS  PubMed  Google Scholar 

  23. Tempera I, Buchetti B, Lococo E, Gradini R, Mastronardi A, Mascellino MT, Sale P, Mosca L, d’Erme M, Lenti L (2008) GD3 nuclear localization after apoptosis induction in HUT-78 cells. Biochem Biophys Res Commun 368:495–500

    Article  CAS  PubMed  Google Scholar 

  24. Hait NC, Allegood J, Maceyka M, Strub GM, Harikumar KB, Singh SK, Luo C, Marmorstein R, Kordula T, Milstien S, Spiegel S (2009) Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science 325:1254–1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Talamas JA, Capelson M (2015) Nuclear envelope and genome interactions in cell fate. Front Genet 6:95

    Article  PubMed  PubMed Central  Google Scholar 

  26. Demmerle J, Koch AJ, Holaska JM (2013) Emerin and histone deacetylase 3 (HDAC3) cooperatively regulate expression and nuclear positions of MyoD, Myf5, and Pax7 genes during myogenesis. Chromosome Res 21:765–779

    Article  CAS  PubMed  Google Scholar 

  27. Wang J, Yu RK (2013) Interaction of ganglioside GD3 with an EGF receptor sustains the self-renewal ability of mouse neural stem cells in vitro. Proc Natl Acad Sci USA 110:19137–19142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tsai YT, Yu RK (2014) Epigenetic activation of mouse ganglioside synthase genes: implications for neurogenesis. J Neurochem 128:101–110

    Article  CAS  PubMed  Google Scholar 

  29. Nakatani Y, Yanagisawa M, Suzuki Y, Yu RK (2010) Characterization of GD3 ganglioside as a novel biomarker of mouse neural stem cells. Glycobiology 20:78–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Itokazu Y, Yu RK (2014) Amyloid beta-peptide 1-42 modulates the proliferation of mouse neural stem cells: upregulation of fucosyltransferase IX and notch signaling. Mol Neurobiol 50:186–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wysocka J, Reilly PT, Herr W (2001) Loss of HCF-1-chromatin association precedes temperature-induced growth arrest of tsBN67 cells. Mol Cell Biol 21:3820–3829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Suzuki Y, Yanagisawa M, Ariga T, Yu RK (2011) Histone acetylation-mediated glycosyltransferase gene regulation in mouse brain during development. J Neurochem 116:874–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yu RK, Lee SH (1976) In vitro biosynthesis of sialosylgalactosylceramide (G7) by mouse brain microsomes. J Biol Chem 251:198–203

    CAS  PubMed  Google Scholar 

  34. Seo S, Lim JW, Yellajoshyula D, Chang LW, Kroll KL (2007) Neurogenin and NeuroD direct transcriptional targets and their regulatory enhancers. EMBO J 26:5093–5108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kizuka Y, Kitazume S, Yoshida M, Taniguchi N (2011) Brain-specific expression of N-acetylglucosaminyltransferase IX (GnT-IX) is regulated by epigenetic histone modifications. J Biol Chem 286:31875–31884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tsai YT, Lin CI, Chen HK, Lee KM, Hsu CY, Yang SJ, Yeh NH (2008) Chromatin tethering effects of hNopp140 are involved in the spatial organization of nucleolus and the rRNA gene transcription. J Biomed Sci 15:471–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zheng X, Kim Y, Zheng Y (2015) Identification of lamin B-regulated chromatin regions based on chromatin landscapes. Mol Biol Cell 26:2685–2697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Osmanagic-Myers S, Dechat T, Foisner R (2015) Lamins at the crossroads of mechanosignaling. Genes Dev 29:225–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tremblay D, Andrzejewski L, Leclerc A, Pelling AE (2013) Actin and microtubules play distinct roles in governing the anisotropic deformation of cell nuclei in response to substrate strain. Cytoskeleton 70:837–848

    Article  CAS  PubMed  Google Scholar 

  40. Ngamukote S, Yanagisawa M, Ariga T, Ando S, Yu RK (2007) Developmental changes of glycosphingolipids and expression of glycogenes in mouse brains. J Neurochem 103:2327–2341

    Article  CAS  PubMed  Google Scholar 

  41. Kotzerke J, Stibane C, Dralle H, Wiese H, Burchert W (1989) Screening for pheochromocytoma in the MEN 2 syndrome. Henry Ford Hosp Med J 37:129–131

    CAS  PubMed  Google Scholar 

  42. Saito M, Hagita H, Ito M, Ando S, Yu RK (2002) Age-dependent reduction in sialidase activity of nuclear membranes from mouse brain. Exp Gerontol 37:937–941

    Article  CAS  PubMed  Google Scholar 

  43. Saito M, Fronda CL, Yu RK (1996) Sialidase activity in nuclear membranes of rat brain. J Neurochem 66:2205–2208

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Wei-Hua Wu for helpful comments on this manuscript. This work was supported in part by a VA Merit Award (1 IO1BX001388 to RKY) and NIH Grants (RO1 NS26994 and RO1 NS11853 to RKY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert K. Yu.

Additional information

Gangliosides are abbreviated using the nomenclatural rules of IUPAC-IUB [1] and according to Svennerholm [2].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, YT., Itokazu, Y. & Yu, R.K. GM1 Ganglioside is Involved in Epigenetic Activation Loci of Neuronal Cells. Neurochem Res 41, 107–115 (2016). https://doi.org/10.1007/s11064-015-1742-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1742-7

Keywords

Navigation