Skip to main content

Advertisement

Log in

Chronic Microcystin-LR-Induced α-Synuclein Promotes Neuroinflammation Through Activation of the NLRP3 Inflammasome in Microglia

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Microcystin-LR (MC-LR) has been confirmed to cause blood–brain barrier disruption and enter the brain tissue, resulting in non-negligible toxic effects. However, the neurotoxicity of MC-LR is mainly unknown. This study revealed that MC-LR disrupted the function of the ubiquitin–proteasome system in neurons, which inhibited the degradation of α-synuclein (α-syn), leading to its release from neurons for transport into microglia. α-Syn is the main component of Lewy bodies, which has been identified as one of the main pathological features of Parkinson’s disease (PD). In vitro, we observed that α-syn mediated by MC-LR activated HMC3 cells and polarized them towards M1 type. In addition, we confirmed that α-syn was transported into HMC3 cells through TLR4 receptors and activated the NLRP3 inflammasome, which in turn enhanced the maturation and release of IL-18 and IL-1β. In the mouse models of chronic MC-LR exposure, a large number of inflammatory factors (IL-6, IL-1β, and TNF-α) were deposited in brain tissue, and activation of NLRP3 in microglia was also observed in the midbrain. Collectively, MC-LR exposure promoted the pathological spread of α-syn from cell to cell, activated NLRP3 inflammasome in microglia, and generated neuroinflammation, in which the TLR4 receptor played a substantial effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed in this article are available from the corresponding author on reasonable request.

References

  1. Redouane EM, El Amrani ZS, El Khalloufi F, Oufdou K, Oudra B, Lahrouni M, Campos A, Vasconcelos V (2019) Mode of action and fate of microcystins in the complex soil-plant ecosystems. Chemosphere 225:270–281. https://doi.org/10.1016/j.chemosphere.2019.03.008

    Article  CAS  Google Scholar 

  2. Lone Y, Koiri RK, Bhide M (2015) An overview of the toxic effect of potential human carcinogen microcystin-LR on testis. Toxicol Rep 2:289–296. https://doi.org/10.1016/j.toxrep.2015.01.008

    Article  CAS  Google Scholar 

  3. He Q, Kang L, Sun X, Jia R, Zhang Y, Ma J, Li H, Ai H (2018) Spatiotemporal distribution and potential risk assessment of microcystins in the Yulin River, a tributary of the Three Gorges Reservoir, China. J Hazard Mater 347:184–195. https://doi.org/10.1016/j.jhazmat.2018.01.001

    Article  CAS  Google Scholar 

  4. Zheng C, Zeng H, Lin H, Wang J, Feng X, Qiu Z, Chen JA, Luo J, Luo Y, Huang Y, Wang L, Liu W, Tan Y, Xu A, Yao Y, Shu W (2017) Serum microcystin levels positively linked with risk of hepatocellular carcinoma: a case-control study in southwest China. Hepatology 66(5):1519–1528. https://doi.org/10.1002/hep.29310

    Article  CAS  Google Scholar 

  5. Pan C, Zhang L, Meng X, Qin H, Xiang Z, Gong W, Luo W, Li D, Han X (2021) Chronic exposure to microcystin-LR increases the risk of prostate cancer and induces malignant transformation of human prostate epithelial cells. Chemosphere 263:128295. https://doi.org/10.1016/j.chemosphere.2020.128295

    Article  CAS  Google Scholar 

  6. Xu D, Yu W, Ma Y, Luo Y, Xu G, Xiang Z, Chen Y, Han X (2021) Association between semen microcystin levels and reproductive quality: a cross-sectional study in Jiangsu and Anhui provinces. China Environ Health Perspect 129(12):127702. https://doi.org/10.1289/EHP9736

    Article  CAS  Google Scholar 

  7. Pouria S, de Andrade A, Barbosa J, Cavalcanti RL, Barreto VT, Ward CJ, Preiser W, Poon GK, Neild GH, Codd GA (1998) Fatal microcystin intoxication in haemodialysis unit in Caruaru. Brazil Lancet 352(9121):21–26. https://doi.org/10.1016/s0140-6736(97)12285-1

    Article  CAS  Google Scholar 

  8. Li XB, Zhang X, Ju J, Li Y, Yin L, Pu Y (2014) Alterations in neurobehaviors and inflammation in hippocampus of rats induced by oral administration of microcystin-LR. Environ Sci Pollut Res Int 21(21):12419–12425. https://doi.org/10.1007/s11356-014-3151-x

    Article  CAS  Google Scholar 

  9. Wang J, Chen Y, Zhang C, Xiang Z, Ding J, Han X (2019) Learning and memory deficits and Alzheimer’s disease-like changes in mice after chronic exposure to microcystin-LR. J Hazard Mater 373:504–518. https://doi.org/10.1016/j.jhazmat.2019.03.106

    Article  CAS  Google Scholar 

  10. Wang J, Zhang C, Zhu J, Ding J, Chen Y, Han X (2019) Blood-brain barrier disruption and inflammation reaction in mice after chronic exposure to microcystin-LR. Sci Total Environ 689:662–678. https://doi.org/10.1016/j.scitotenv.2019.06.387

    Article  CAS  Google Scholar 

  11. Zhang C, Wang J, Zhu J, Chen Y, Han X (2020) Microcystin-leucine-arginine induced neurotoxicity by initiating mitochondrial fission in hippocampal neurons. Sci Total Environ 703:134702. https://doi.org/10.1016/j.scitotenv.2019.134702

    Article  CAS  Google Scholar 

  12. Wang X, Xu L, Li X, Chen J, Zhou W, Sun J, Wang Y (2018) The differential effects of microcystin-LR on mitochondrial DNA in the hippocampus and cerebral cortex. Environ Pollut 240:68–76. https://doi.org/10.1016/j.envpol.2018.04.103

    Article  CAS  Google Scholar 

  13. Ju J, Ruan Q, Li X, Liu R, Li Y, Pu Y, Yin L, Wang D (2013) Neurotoxicological evaluation of microcystin-LR exposure at environmental relevant concentrations on nematode Caenorhabditis elegans. Environ Sci Pollut Res Int 20(3):1823–1830. https://doi.org/10.1007/s11356-012-1151-2

    Article  CAS  Google Scholar 

  14. Yan M, Jin H, Pan C, Hang H, Li D, Han X (2022) Movement disorder and neurotoxicity induced by chronic exposure to microcystin-LR in mice. Mol Neurobiol. https://doi.org/10.1007/s12035-022-02919-y

    Article  Google Scholar 

  15. Petrucci S, Consoli F, Valente EM (2014) Parkinson disease genetics: a “continuum” from Mendelian to multifactorial inheritance. Curr Mol Med 14(8):1079–1088. https://doi.org/10.2174/1566524014666141010155509

    Article  CAS  Google Scholar 

  16. Panicker N, Sarkar S, Harischandra DS, Neal M, Kam TI, Jin H, Saminathan H, Langley M, Charli A, Samidurai M, Rokad D, Ghaisas S, Pletnikova O, Dawson VL, Dawson TM, Anantharam V, Kanthasamy AG, Kanthasamy A (2019) Fyn kinase regulates misfolded alpha-synuclein uptake and NLRP3 inflammasome activation in microglia. J Exp Med 216(6):1411–1430. https://doi.org/10.1084/jem.20182191

    Article  CAS  Google Scholar 

  17. Proulx J, Borgmann K, Park IW (2021) Role of virally-encoded deubiquitinating enzymes in regulation of the virus life cycle. Int J Mol Sci 22 (9). https://doi.org/10.3390/ijms22094438

  18. Hedhli N, Depre C (2010) Proteasome inhibitors and cardiac cell growth. Cardiovasc Res 85(2):321–329. https://doi.org/10.1093/cvr/cvp226

    Article  CAS  Google Scholar 

  19. Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, Schrag AE, Lang AE (2017) Parkinson disease. Nat Rev Dis Primers 3:17013. https://doi.org/10.1038/nrdp.2017.13

    Article  Google Scholar 

  20. Luk KC, Kehm V, Carroll J, Zhang B, O’Brien P, Trojanowski JQ, Lee VM (2012) Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338(6109):949–953. https://doi.org/10.1126/science.1227157

    Article  CAS  Google Scholar 

  21. More SV, Choi DK (2015) Promising cannabinoid-based therapies for Parkinson’s disease: motor symptoms to neuroprotection. Mol Neurodegener 10:17. https://doi.org/10.1186/s13024-015-0012-0

    Article  CAS  Google Scholar 

  22. Ghadery C, Koshimori Y, Coakeley S, Harris M, Rusjan P, Kim J, Houle S, Strafella AP (2017) Microglial activation in Parkinson’s disease using [(18)F]-FEPPA. J Neuroinflammation 14(1):8. https://doi.org/10.1186/s12974-016-0778-1

    Article  CAS  Google Scholar 

  23. Beach TG, Sue LI, Walker DG, Lue LF, Connor DJ, Caviness JN, Sabbagh MN, Adler CH (2007) Marked microglial reaction in normal aging human substantia nigra: correlation with extraneuronal neuromelanin pigment deposits. Acta Neuropathol 114(4):419–424. https://doi.org/10.1007/s00401-007-0250-5

    Article  Google Scholar 

  24. Song DD, Shults CW, Sisk A, Rockenstein E, Masliah E (2004) Enhanced substantia nigra mitochondrial pathology in human alpha-synuclein transgenic mice after treatment with MPTP. Exp Neurol 186(2):158–172. https://doi.org/10.1016/S0014-4886(03)00342-X

    Article  CAS  Google Scholar 

  25. Ancolio K, Alves da Costa C, Ueda K, Checler F (2000) Alpha-synuclein and the Parkinson’s disease-related mutant Ala53Thr-alpha-synuclein do not undergo proteasomal degradation in HEK293 and neuronal cells. Neurosci Lett 285(2):79–82. https://doi.org/10.1016/s0304-3940(00)01049-1

    Article  CAS  Google Scholar 

  26. Su X, Maguire-Zeiss KA, Giuliano R, Prifti L, Venkatesh K, Federoff HJ (2008) Synuclein activates microglia in a model of Parkinson’s disease. Neurobiol Aging 29(11):1690–1701. https://doi.org/10.1016/j.neurobiolaging.2007.04.006

    Article  CAS  Google Scholar 

  27. Lema Tome CM, Tyson T, Rey NL, Grathwohl S, Britschgi M, Brundin P (2013) Inflammation and alpha-synuclein’s prion-like behavior in Parkinson’s disease–is there a link? Mol Neurobiol 47(2):561–574. https://doi.org/10.1007/s12035-012-8267-8

    Article  CAS  Google Scholar 

  28. Freeman L, Guo H, David CN, Brickey WJ, Jha S, Ting JP (2017) NLR members NLRC4 and NLRP3 mediate sterile inflammasome activation in microglia and astrocytes. J Exp Med 214(5):1351–1370. https://doi.org/10.1084/jem.20150237

    Article  CAS  Google Scholar 

  29. Ramesh G, MacLean AG, Philipp MT (2013) Cytokines and chemokines at the crossroads of neuroinflammation, neurodegeneration, and neuropathic pain. Mediators Inflamm 2013:480739. https://doi.org/10.1155/2013/480739

    Article  CAS  Google Scholar 

  30. Gordon R, Albornoz EA, Christie DC, Langley MR, Kumar V, Mantovani S, Robertson AAB, Butler MS, Rowe DB, O’Neill LA, Kanthasamy AG, Schroder K, Cooper MA, Woodruff TM (2018) Inflammasome inhibition prevents alpha-synuclein pathology and dopaminergic neurodegeneration in mice. Sci Transl Med 10 (465). https://doi.org/10.1126/scitranslmed.aah4066

  31. Yan M, Gu S, Pan C, Chen Y, Han X (2021) MC-LR-induced interaction between M2 macrophage and biliary epithelial cell promotes biliary epithelial cell proliferation and migration through regulating STAT3. Cell Biol Toxicol 37(6):935–949. https://doi.org/10.1007/s10565-020-09575-9

    Article  CAS  Google Scholar 

  32. Cho MH, Cho K, Kang HJ, Jeon EY, Kim HS, Kwon HJ, Kim HM, Kim DH, Yoon SY (2014) Autophagy in microglia degrades extracellular beta-amyloid fibrils and regulates the NLRP3 inflammasome. Autophagy 10(10):1761–1775. https://doi.org/10.4161/auto.29647

    Article  CAS  Google Scholar 

  33. Haque ME, Akther M, Jakaria M, Kim IS, Azam S, Choi DK (2020) Targeting the microglial NLRP3 inflammasome and its role in Parkinson’s disease. Mov Disord 35(1):20–33. https://doi.org/10.1002/mds.27874

    Article  CAS  Google Scholar 

  34. Xiao Y, Jin J, Chang M, Chang JH, Hu H, Zhou X, Brittain GC, Stansberg C, Torkildsen O, Wang X, Brink R, Cheng X, Sun SC (2013) Peli1 promotes microglia-mediated CNS inflammation by regulating Traf3 degradation. Nat Med 19(5):595–602. https://doi.org/10.1038/nm.3111

    Article  CAS  Google Scholar 

  35. Mori A, Hatano T, Inoshita T, Shiba-Fukushima K, Koinuma T, Meng H, Kubo SI, Spratt S, Cui C, Yamashita C, Miki Y, Yamamoto K, Hirabayashi T, Murakami M, Takahashi Y, Shindou H, Nonaka T, Hasegawa M, Okuzumi A, Imai Y, Hattori N (2019) Parkinson’s disease-associated iPLA2-VIA/PLA2G6 regulates neuronal functions and alpha-synuclein stability through membrane remodeling. Proc Natl Acad Sci U S A 116(41):20689–20699. https://doi.org/10.1073/pnas.1902958116

    Article  CAS  Google Scholar 

  36. Mao K, Chen J, Yu H, Li H, Ren Y, Wu X, Wen Y, Zou F, Li W (2020) Poly (ADP-ribose) polymerase 1 inhibition prevents neurodegeneration and promotes alpha-synuclein degradation via transcription factor EB-dependent autophagy in mutant alpha-synucleinA53T model of Parkinson’s disease. Aging Cell 19(6):e13163. https://doi.org/10.1111/acel.13163

    Article  CAS  Google Scholar 

  37. Myeku N, Figueiredo-Pereira ME (2011) Dynamics of the degradation of ubiquitinated proteins by proteasomes and autophagy: association with sequestosome 1/p62. J Biol Chem 286(25):22426–22440. https://doi.org/10.1074/jbc.M110.149252

    Article  CAS  Google Scholar 

  38. Ingelsson M (2016) Alpha-synuclein oligomers-neurotoxic molecules in Parkinson’s disease and other Lewy body disorders. Front Neurosci 10:408. https://doi.org/10.3389/fnins.2016.00408

    Article  Google Scholar 

  39. Mondal A, Saha P, Bose D, Chatterjee S, Seth RK, Xiao S, Porter DE, Brooks BW, Scott GI, Nagarkatti M, Nagarkatti P, Chatterjee S (2021) Environmental microcystin exposure in underlying NAFLD-induced exacerbation of neuroinflammation, blood-brain barrier dysfunction, and neurodegeneration are NLRP3 and S100B dependent. Toxicology 461:152901. https://doi.org/10.1016/j.tox.2021.152901

    Article  CAS  Google Scholar 

  40. Tang Y, Le W (2016) Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol 53(2):1181–1194. https://doi.org/10.1007/s12035-014-9070-5

    Article  CAS  Google Scholar 

  41. La Vitola P, Balducci C, Cerovic M, Santamaria G, Brandi E, Grandi F, Caldinelli L, Colombo L, Morgese MG, Trabace L, Pollegioni L, Albani D, Forloni G (2018) Alpha-synuclein oligomers impair memory through glial cell activation and via Toll-like receptor 2. Brain Behav Immun 69:591–602. https://doi.org/10.1016/j.bbi.2018.02.012

    Article  CAS  Google Scholar 

  42. Tu HY, Yuan BS, Hou XO, Zhang XJ, Pei CS, Ma YT, Yang YP, Fan Y, Qin ZH, Liu CF, Hu LF (2021) alpha-synuclein suppresses microglial autophagy and promotes neurodegeneration in a mouse model of Parkinson’s disease. Aging Cell 20(12):e13522. https://doi.org/10.1111/acel.13522

    Article  CAS  Google Scholar 

  43. Li Y, Liang W, Guo C, Chen X, Huang Y, Wang H, Song L, Zhang D, Zhan W, Lin Z, Tan H, Bei W, Guo J (2020) Renshen Shouwu extract enhances neurogenesis and angiogenesis via inhibition of TLR4/NF-kappaB/NLRP3 signaling pathway following ischemic stroke in rats. J Ethnopharmacol 253:112616. https://doi.org/10.1016/j.jep.2020.112616

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (31870492, 31901182, 31670519, and 31971517), the Natural Science Foundation of Jiangsu Province of China (BK20190316), and Fundamental Research Funds for the Central Universities (0214–14380438 and 0214–14380471).

Author information

Authors and Affiliations

Authors

Contributions

Minghao Yan—writing of the first draft, manuscript preparation. Haibo Jin—writing of the first draft, review, and critique. Chun Pan—writing of the first draft, review, and critique. Xiaodong Han—review and critique.

Corresponding author

Correspondence to Xiaodong Han.

Ethics declarations

Ethics Approval and Consent to Participate

All animal procedures were performed humanely and approved by the Nanjing University Animal Care and Use Committee under animal protocol number SYXK (Su) 2009–0017.

Consent for Publication

All authors have agreed to publish this manuscript.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1803 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, M., Jin, H., Pan, C. et al. Chronic Microcystin-LR-Induced α-Synuclein Promotes Neuroinflammation Through Activation of the NLRP3 Inflammasome in Microglia. Mol Neurobiol 60, 884–900 (2023). https://doi.org/10.1007/s12035-022-03134-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-03134-5

Keywords

Navigation