Skip to main content
Log in

Pamiparib Induces Neurodevelopmental Defects and Cerebral Haemorrhage in Zebrafish Embryos via Inhibiting Notch Signalling

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Pamiparib is a poly ADP-ribose polymerase (PARP) inhibitor used in clinical studies, which can penetrate the blood–brain barrier efficiently. At present, there are few studies on its effect on vertebrate neurodevelopment. In this study, we exposed zebrafish embryos to 1, 2 and 3 µM of Pamiparib from 6 to 72 h post-fertilisation (hpf). Results showed that pamiparib can specifically induce cerebral haemorrhage, brain atrophy and movement disorders in fish larvae. In addition, pamiparib exposure leads to downregulation of acetylcholinesterase (AChE) and adenosine triphosphate (ATPase) activities, and upregulation of oxidative stress which then leads to apoptosis and disrupts the gene expression involved in the neurodevelopment, neurotransmitter pathways and Parkinson’s disease (PD) like symptoms. Meanwhile, astaxanthin can partially rescue neurodevelopmental defects by downregulating oxidative stress. After exposure to pamiparib, the Notch signalling is downregulated, and the use of an activator of Notch signalling can partially rescue neurodevelopmental toxicity. Therefore, our research indicates that pamiparib may induce zebrafish neurotoxicity by downregulating Notch signalling and provides a reference for the potential neurotoxicity of pamiparib during embryonic development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this article and its supplementary materials.

References

  1. Xiong Y et al (2020) Pamiparib is a potent and selective PARP inhibitor with unique potential for the treatment of brain tumor. Neoplasia 22(9):431–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Friedlander M et al (2019) Pamiparib in combination with tislelizumab in patients with advanced solid tumours: results from the dose-escalation stage of a multicentre, open-label, phase 1a/b trial. Lancet Oncol 20(9):1306–1315

    Article  CAS  PubMed  Google Scholar 

  3. Zada D et al (2021) Parp1 promotes sleep, which enhances DNA repair in neurons. Mol Cell 81(24):4979-4993.e7

    Article  CAS  PubMed  Google Scholar 

  4. Ke Y et al (2019) The role of PARPs in inflammation-and metabolic-related diseases: molecular mechanisms and beyond. Cells 8(9):1047

  5. Kurokawa S et al (2019) Suppression of cell cycle progression by poly(ADP-ribose) polymerase inhibitor PJ34 in neural stem/progenitor cells. Biochem Biophys Res Commun 510(1):59–64

    Article  CAS  PubMed  Google Scholar 

  6. Horzmann KA, Freeman JL (2018) Making waves: new developments in toxicology with the zebrafish. Toxicol Sci 163(1):5–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Randlett O et al (2015) Whole-brain activity mapping onto a zebrafish brain atlas. Nat Methods 12(11):1039–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cao Z et al (2021) Carboxyl graphene oxide nanoparticles induce neurodevelopmental defects and locomotor disorders in zebrafish larvae. Chemosphere 270:128611

    Article  CAS  PubMed  Google Scholar 

  9. Cao Z et al (2019) Exposure to diclofop-methyl induces immunotoxicity and behavioral abnormalities in zebrafish embryos. Aquat Toxicol 214:105253

    Article  CAS  PubMed  Google Scholar 

  10. Cao Z et al (2020) Exposure to diclofop-methyl induces cardiac developmental toxicity in zebrafish embryos. Environ Pollut 259:113926

    Article  CAS  PubMed  Google Scholar 

  11. Wang H et al (2020) Characterization of boscalid-induced oxidative stress and neurodevelopmental toxicity in zebrafish embryos. Chemosphere 238:124753

    Article  CAS  PubMed  Google Scholar 

  12. Qiu L et al (2019) Hepatotoxicity of tricyclazole in zebrafish (Danio rerio). Chemosphere 232:171–179

    Article  CAS  PubMed  Google Scholar 

  13. Tao Z-S et al (2021) Hydrogel contained valproic acid accelerates bone-defect repair via activating Notch signaling pathway in ovariectomized rats. J Mater Sci: Mater Med 33(1):4–4

    Google Scholar 

  14. Song YS et al (2021) Validation, optimization, and application of the zebrafish developmental toxicity assay for pharmaceuticals under the ICH S5(R3) guideline. Front Cell Dev Biol 9:721130

    Article  PubMed  PubMed Central  Google Scholar 

  15. Farrés J et al (2015) PARP-2 sustains erythropoiesis in mice by limiting replicative stress in erythroid progenitors. Cell Death Differ 22(7):1144–1157

    Article  PubMed  Google Scholar 

  16. Perrotta I et al (2011) iNOS induction and PARP-1 activation in human atherosclerotic lesions: an immunohistochemical and ultrastructural approach. Cardiovasc Pathol 20(4):195–203

    Article  CAS  PubMed  Google Scholar 

  17. Tentori L et al (2007) Poly(ADP-ribose) polymerase (PARP) inhibition or PARP-1 gene deletion reduces angiogenesis. Eur J Cancer 43(14):2124–2133

    Article  CAS  PubMed  Google Scholar 

  18. Wang Y et al (2013) Inhibition of PARP prevents angiotensin II-induced aortic fibrosis in rats. Int J Cardiol 167(5):2285–2293

    Article  PubMed  Google Scholar 

  19. Fotiadis P et al (2020) White matter atrophy in cerebral amyloid angiopathy. Neurology 95(5):e554–e562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu R et al (2020) Association of brain iron overload with brain edema and brain atrophy after intracerebral hemorrhage. Front Neurol 11:602413–602413

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chen J et al (2019) Cerebrovascular injuries induce lymphatic invasion into brain parenchyma to guide vascular regeneration in zebrafish. Dev Cell 49(5):697-710.e5

    Article  CAS  PubMed  Google Scholar 

  22. Chen J et al (2021) Acute brain vascular regeneration occurs via lymphatic transdifferentiation. Dev Cell 56(22):3115-3127.e6

    Article  CAS  PubMed  Google Scholar 

  23. Okuda A et al (2017) Poly(ADP-ribose) polymerase inhibitors activate the p53 signaling pathway in neural stem/progenitor cells. BMC Neurosci 18(1):14

    Article  PubMed  PubMed Central  Google Scholar 

  24. Guo C et al (2013) Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res 8(21):2003–2014

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Luo G et al (2013) Pubertal exposure to Bisphenol A increases anxiety-like behavior and decreases acetylcholinesterase activity of hippocampus in adult male mice. Food Chem Toxicol 60:177–180

    Article  CAS  PubMed  Google Scholar 

  26. Li VW et al (2016) Effects of 4-methylbenzylidene camphor (4-MBC) on neuronal and muscular development in zebrafish (Danio rerio) embryos. Environ Sci Pollut Res Int 23(9):8275–8285

    Article  CAS  PubMed  Google Scholar 

  27. Inoue K (1998) ATP receptors for the protection of hippocampal functions. Jpn J Pharmacol 78(4):405–410

    Article  CAS  PubMed  Google Scholar 

  28. Yan W et al (2017) Microcystin-LR induces changes in the GABA neurotransmitter system of zebrafish. Aquat Toxicol 188:170–176

    Article  CAS  PubMed  Google Scholar 

  29. Kao HT et al (1998) A third member of the synapsin gene family. Proc Natl Acad Sci U S A 95(8):4667–4672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nielsen AL, Jørgensen AL (2003) Structural and functional characterization of the zebrafish gene for glial fibrillary acidic protein GFAP. Gene 310:123–132

    Article  CAS  PubMed  Google Scholar 

  31. Park H et al (2020) Poly (ADP-ribose) (PAR)-dependent cell death in neurodegenerative diseases. Int Rev Cell Mol Biol 353:1–29

    Article  CAS  PubMed  Google Scholar 

  32. Yu SW et al (2003) Poly(ADP-ribose) polymerase-1 and apoptosis inducing factor in neurotoxicity. Neurobiol Dis 14(3):303–317

    Article  CAS  PubMed  Google Scholar 

  33. Hu XM et al (2018) In silico identification of AChE and PARP-1 dual-targeted inhibitors of Alzheimer’s disease. J Mol Model 24(7):151

    Article  PubMed  Google Scholar 

  34. Chaitanya GV, Steven AJ, Babu PP (2010) PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration. Cell Commun Signal 8:31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fatokun AA, Dawson VL, Dawson TM (2014) Parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities. Br J Pharmacol 171(8):2000–2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Siebel C, Lendahl U (2017) Notch signaling in development, tissue homeostasis, and disease. Physiol Rev 97(4):1235–1294

    Article  CAS  PubMed  Google Scholar 

  37. Sun M, Sun M, Zhang J (2021) Osthole: an overview of its sources, biological activities, and modification development. Med Chem Res 30(10):1767–1794

  38. Vernon AE et al (2006) Notch targets the Cdk inhibitor Xic1 to regulate differentiation but not the cell cycle in neurons. EMBO Rep 7(6):643–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang X et al (2004) Notch activation induces apoptosis in neural progenitor cells through a p53-dependent pathway. Dev Biol 269(1):81–94

    Article  CAS  PubMed  Google Scholar 

  40. Kannan S et al (2011) Notch/HES1-mediated PARP1 activation: a cell type-specific mechanism for tumor suppression. Blood 117(10):2891–2900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Qin X et al (2011) Notch signaling protects retina from nuclear factor-κB- and poly-ADP-ribose-polymerase-mediated apoptosis under high-glucose stimulation. Acta Biochim Biophys Sin (Shanghai) 43(9):703–711

    Article  Google Scholar 

  42. Huang M et al (2014) Γ-secretase inhibitor DAPT prevents neuronal death and memory impairment in sepsis associated encephalopathy in septic rats. Chin Med J (Engl) 127(5):924–928

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank all the subjects for their participation in the study.

Funding

This work was supported by the National Natural Science Foundation (31900597, 81860282, 81960101); Natural Science Foundation Project of Jiangxi Province (20192ACB21013); Jiangxi Province’s major academic and technical leaders training plan for young talents (20204BCJL23043); and Jiangxi Provincial Department of Education Science and Technology Program Project (GJJ211004).

Author information

Authors and Affiliations

Authors

Contributions

Z.C. and D.Y. designed experiment and wrote the manuscript; D.Y. performed all of experiments; F.L., M.W., J.L., L.H.,C.C., X.L.,L.Z.,X.D., X.L.,G.X., H.L,J.X., and Z.C. analysed data.

Corresponding author

Correspondence to Zigang Cao.

Ethics declarations

Ethics Approval

All fish were raised and maintained under standard laboratory conditions in accordance with the Guidelines of Experimental Animal Welfare from Ministry of Science and Technology of People’s Republic of China (2006) and the Institutional Animal Care and Use Committee protocols from Jinggangshan University (2016).

Consent to Participate

Not applicable.

Consent for Publication

All the authors have read the manuscript and agreed for its publication.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, D., Liu, F., Wan, M. et al. Pamiparib Induces Neurodevelopmental Defects and Cerebral Haemorrhage in Zebrafish Embryos via Inhibiting Notch Signalling. Mol Neurobiol 59, 6652–6665 (2022). https://doi.org/10.1007/s12035-022-02988-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02988-z

Keywords

Navigation