Skip to main content

Advertisement

Log in

Effects of 4-methylbenzylidene camphor (4-MBC) on neuronal and muscular development in zebrafish (Danio rerio) embryos

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The negative effects of overexposure to ultraviolet (UV) radiation in humans, including sunburn and light-induced cellular injury, are of increasing public concern. 4-Methylbenzylidene camphor (4-MBC), an organic chemical UV filter, is an active ingredient in sunscreen products. To date, little information is available about its neurotoxicity during early vertebrate development. Zebrafish embryos were exposed to various concentrations of 4-MBC in embryo medium for 3 days. In this study, a high concentration of 4-MBC, which is not being expected at the current environmental concentrations in the environment, was used for the purpose of phenotypic screening. Embryos exposed to 15 μM of 4-MBC displayed abnormal axial curvature and exhibited impaired motility. Exposure effects were found to be greatest during the segmentation period, when somite formation and innervation occur. Immunostaining of the muscle and axon markers F59, znp1, and zn5 revealed that 4-MBC exposure leads to a disorganized pattern of slow muscle fibers and axon pathfinding errors during the innervation of both primary and secondary motor neurons. Our results also showed reduction in AChE activity upon 4-MBC exposure both in vivo in the embryos (15 μM) and in vitro in mammalian Neuro-2A cells (0.1 μM), providing a possible mechanism for 4-MBC-induced muscular and neuronal defects. Taken together, our results have shown that 4-MBC is a teratogen and influences muscular and neuronal development, which may result in developmental defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Altringham JD, Ellerby DJ (1999) Fish swimming: patterns in muscle function. J Exp Biol 202:3397–3403

    CAS  Google Scholar 

  • Anwar K (2004) Toxic effects of cypermethrin on the development of muscle in chick embryo of Gallus domesticus. Int J Agric Biol 6:2

    Google Scholar 

  • Balmer ME, Buser HR, Müller MD, Poiger T (2005) Occurrence of some organic chemical UV filters in wastewater, in surface waters, and in fish from Swiss lakes. Environ Sci Tech 39:953–962

    Article  CAS  Google Scholar 

  • Behra M, Cousin X, Bertrand C, Vonesch JL, Biellmann D, Chatonnet A, Strahle U (2002) Acetylcholinesterase is required for neuronal and muscular development in the zebrafish embryo. Nat Neurosci 5:111

    Article  CAS  Google Scholar 

  • Brennan C, Mangoli M, Dyer CEF, Ashworth R (2005) Acetylcholine and calcium signaling regulates muscle fibre formation in the zebrafish embryo. J Cell Sci 118:5181–5190

    Article  CAS  Google Scholar 

  • Chen TH, Wang YH, Wu YH (2011) Developmental exposures to ethanol or dimethylsulfoxide at low concentrations alter locomotor activity in larval zebrafish: implications for behavioral toxicity bioassays. Aquat Toxicol 102:162–166

    Article  CAS  Google Scholar 

  • Cheng SH, Wai AWK, So CH, Wu RSS (2000) Cellular and molecular basis of cadmium-induced deformities in zebrafish embryos. Environ Toxicol Chem 19(12):3024–3031

    Article  CAS  Google Scholar 

  • Chow ESL, Cheng SH (2003) Cadmium affects muscle type development and axon growth in zebrafish embryonic somitogenesis. Toxicol Sci 73:149–159

    Article  Google Scholar 

  • Coleman BA, Taylor P (1996) Regulation of acetylcholinesterase expression during neuronal differentiation. J Biol Chem 271:4410–4416

    Article  CAS  Google Scholar 

  • Crow MT, Stockdale FE (1986) The developmental program of fast myosin heavy chain expression in avian skeletal muscles. Dev Biol 118:333–342

    Article  CAS  Google Scholar 

  • Durrer S, Maerkel K, Schlumpf M, Lichtensteiger W (2005) Estrogen target gene regulation and coactivator expression in rat uterus after developmental exposure to the ultraviolet filter 4-methylbenzylidene camphor. Endocrinology 146:2130–2139

    Article  CAS  Google Scholar 

  • Ellman GL, Courtney KD, Andes V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharm 7:88–95

    Article  CAS  Google Scholar 

  • Fashena D, Westerfield M (1999) Secondary motoneuron axons localize DM-GRASP on their fasciculated segments. J Comp Neurol 406:415–424

    Article  CAS  Google Scholar 

  • Giokas DL, Salvador A, Chisvert A (2007) UV filters: from sunscreens to human body and the environment. Trends Anal Chem 26:360–374

    Article  CAS  Google Scholar 

  • Gomez TM, Spitzer NC (1999) In vivo regulation of axon extension and pathfinding by growth-cone calcium transients. Nature 6717:350–355

    Article  Google Scholar 

  • Gruber SJ, Munn MD (1998) Organophosphate and carbonate insecticide in agricultural waters and cholinesterase (ChE) inhibition in Common carp (Cyprinus carpio). Archit Environ Control Toxicol 35:391–396

    Article  CAS  Google Scholar 

  • Hagedorn-Leweke U, Lippold BC (1995) Absorption of sunscreens and other compounds through human skin in vivo: derivation of a method to predict maximum fluxes. Pharm Res 12:1354–1360

    Article  CAS  Google Scholar 

  • Hallare AV, Köhler HR, Triebskorn R (2004) Developmental toxicity and stress protein responses in zebrafish embryos after exposure to diclofenac and its solvent, DMSO. Chemosphere 56(7):659–666

    Article  CAS  Google Scholar 

  • Hanneman E, Trevarrow B, Metcalfe WK, Kimmel CB, Westerfield M (1988a) Segmental pattern of development of the hindbrain and spinal cord of the zebrafish embryo. Development 103(1):49–58

    CAS  Google Scholar 

  • Hanneman E, Trevarrow B, Metcalde WK, Kimmel CB, Westerfield M (1988b) Segmental pattern of development of the hindbrain and spinal cord of the zebrafish. Development 103(1):49–58

    CAS  Google Scholar 

  • Henry TR, Spitsbergen JM, Hornung MW, Abnet CC, Peterson RE (1997) Early life stage toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin in zebrafish (Danio rerio). Toxicol Appl Pharmacol 142:56–68

    Article  CAS  Google Scholar 

  • Hofkamp L, Bradley S, Tresguerres J, Lichtensteiger W, Schlumpf M, Timms B (2008) Region-specific growth effects in the developing rat prostate following fetal exposure to estrogenic ultraviolet filters. Environ Health Perspect 116(7):867–872

    Article  CAS  Google Scholar 

  • Howes MR, Perry NSL, Houghton PJ (2003) Plants with traditional uses and activities, relevant to the management of Alzheimer’s disease and other cognitive disorders. Phytother Res 17:1–18

    Article  CAS  Google Scholar 

  • Janjua NR, Mogensen B, Andersson AM, Petersen JH, Henriksen M, Skakkebaek NE, Wulf HC (2004) Systemic absorption of the sunscreens benzophenone-3, octylmethoxycinnamate, and 3-(4-methyl-benzylidene) camphor after whole-body topical application and reproductive hormone levels in humans. J Invest Dermatol 123(1):57–61

    Article  CAS  Google Scholar 

  • Karnovsky MJ, Roots L (1964) A direct colouring thiocholine method for cholinesterase. J Histochem Cytochem 12:219–221

    Article  CAS  Google Scholar 

  • Klann A, Levy G, Lutz I (2005) Estrogen-like effects of ultraviolet screen 3-(4methylbenzylidene)-camphor (Eusolex 6300) on cell proliferation and gene induction in mammalian and amphibian cells. Environ Res 97:274–281

    Article  CAS  Google Scholar 

  • Kunz PY, Galicia HF, Fent K (2006) Comparison of in vitro and in vivo estrogenic activity of UV filters in fish. Toxicol Sci 90:349–361

    Article  CAS  Google Scholar 

  • Langheinrich U (2003) Zebrafish: a new model on the pharmaceutical catwalk. Bioessays 25:904–912

    Article  CAS  Google Scholar 

  • Law RJ, Alaee M, Allchin CR, Boon JP, Lebeuf M, Lepom P, Stern GA (2003) Levels and trends of polybrominated diphenylethers and other brominated flame retardants in wildlife. Environ Int 29:757–770

    Article  CAS  Google Scholar 

  • Layer PG, Weikert T, Alber R (1993) Cholinesterases regulate neurite growth of chick nerve cells in vitro by means of a non-enzymatic mechanism. Cell Tissue Res 273:219–226

    Article  CAS  Google Scholar 

  • Lichtensteiger W, Ceccatelli R, Conscience M, Cotton B, Durrer S, Faass O, Fleischmann I, Ma R, Maerkel K, Schlumpf M (2002) Newly arising endocrine disruptors: UV screens and PBDE. Reprod Toxicol 16:397–398

    Google Scholar 

  • Metcalfe W, Myers P, Trevarrow B, Bass M, Kimmel C (1990) Primary neurons that express the L2/HNK-1 carbohydrate during early development in the zebrafish. Development 110:491–504

    CAS  Google Scholar 

  • Mirkes P, McClure M, Heindel J, Sander M (2003) Developmental toxicology in the 21st century: multidisciplinary approaches using model organisms and genomics. Birth Defects Res Part Clin Mol Teratol 67:21–34

    Article  CAS  Google Scholar 

  • Miyazawa M, Watanabe H, Kameoka H (1997) Inhibition of acetylcholinesterase activity by monoterpenoids with a p-menthane skeleton. J Agric Food Chem 45:677–679

    Article  CAS  Google Scholar 

  • Nagtegaal M, Ternes TA, Baumann W, Nagel R (1997) UV-Filtersubstanzen in Wasser und Fischen. UWSF-Z Umweltchem Ökotox 9:79–86

    Article  CAS  Google Scholar 

  • Rodil R, Schrader S, Moeder M (2009) Non-porous membrane-assisted liquid–liquid extraction of UV filter compounds from water samples. J Chromatogr A 1216:4887–4894

    Article  CAS  Google Scholar 

  • Ross LS, Parrett T, Easter SS Jr (1992) Axonogenesis and morphogenesis in the embryonic zebrafish brain. J Neurosci 12:467–482

    CAS  Google Scholar 

  • Roy KK, Dixit A, Saxena AK (2008) An investigation of structurally diverse carbamates for acetylcholinesterase (AChE) inhibition using 3D-QSAR analysis. J Mol Graph Model 27(2):197–208

    Article  CAS  Google Scholar 

  • Schlumpf M, Cotton B, Conscience M, Haller V, Steinmann B, Lichtensteiger W (2001) In vitro and in vivo estrogenicity of UV screens. Environ Health Perspect 109:239–244

    Article  CAS  Google Scholar 

  • Schlumpf M, Schmid P, Durrer S, Conscience M, Maerkel K, Henseler M, Gruetter M, Herzog I, Reolon S, Ceccatelli R, Faass O, Stutz E, Jarry H, Wuttke W, Lichtensteiger W (2004) Endocrine activity and developmental toxicity of cosmetic UV filters—an update. Toxicology 205:113–122

    Article  CAS  Google Scholar 

  • Schmitt C, Oetken M, Dittberner O, Wagner M, Oehlmann J (2008) Endocrine modulation and toxic effects of two commonly use UV screens on the aquatic invertebrates Potamopyrgus antipodarum and Lumbriculus variegates. Environ Pollut 152:322–329

    Article  CAS  Google Scholar 

  • Soto AM, Sonnenschein C (2005) Shining a light on sunscreens. Endocrinology 146:2127–2129

    Article  CAS  Google Scholar 

  • Stehr CM, Linbo TL, Incardona JP, Scholz NL (2006) The developmental neurotoxicity of fipronil: notochord degeneration and locomotor defects in zebrafish embryos and larvae. Toxicol Sci 92(1):270–278

    Article  CAS  Google Scholar 

  • Sternfeld M, Ming G, Song H, Sela K, Timberg R, Poo M, Soreq H (1998) Acetylcholinesterase enhances neurite growth and synapse development through alternative contributions of its hydrolytic capacity, core protein, and variable C termini. J Neurosci 18(4):1240–1249

    CAS  Google Scholar 

  • Trevarrow B, Marks DL, Kimmel CB (1990) Organization of hindbrain segments in the zebrafish embryo. Neuron 4:669–679

    Article  CAS  Google Scholar 

  • Westerfield M (1993) A guide for the laboratory use of zebrafish Danio (Brachydanio) rerio. University of Oregon Press, Eugene, OR, USA

    Google Scholar 

  • Wilson SW, Ross LS, Parrett T, Easter SS Jr (1990) The development of a simple scaffold of axon tracts in the brain of the embryonic zebrafish, Brachydanio rerio. Development 108:121–145

    CAS  Google Scholar 

  • Zhang J, Malayaman S, Davis C, Granato M (2001) A dual role for the zebrafish unplugged gene in motor axon pathfinding and pharyngeal development. Dev Biol 240(2):560–573

    Article  CAS  Google Scholar 

  • Zon LI, Peterson RT (2005) In vivo drug discovery in the zebrafish. Nat Rev Drug Discov 4:35–44

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work described in this paper was substantially supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. CityU 160110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuk Han Cheng.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Responsible editor: Henner Hollert

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, V.W.T., Tsui, M.P.M., Chen, X. et al. Effects of 4-methylbenzylidene camphor (4-MBC) on neuronal and muscular development in zebrafish (Danio rerio) embryos. Environ Sci Pollut Res 23, 8275–8285 (2016). https://doi.org/10.1007/s11356-016-6180-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6180-9

Keywords

Navigation