Skip to main content

Advertisement

Log in

Effect of TDP43-CTFs35 on Brain Endothelial Cell Functions in Cerebral Ischemic Injury

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Pathological changes in the brain endothelium play an important role in the progression of ischemic stroke and the compromised BBB under ischemic stroke conditions cause neuronal damage. However, the pathophysiological mechanisms of the BBB under normal conditions and under ischemic stroke conditions have not been fully elucidated. The present study demonstrated that knockdown of TAR DNA-binding protein 43 (TDP-43) or overexpression of TDP43-CTFs35 inhibited tight junction protein expression, and mammalian sterile-20-like 1/2 (MST1/2) and YES-associated protein (YAP) phosphorylation in brain ECs and suppressed brain EC migration in vitro. The cytoplasmic TDP43-CTFs35 level was increased in brain ECs 24 h and 72 h after MCAO, but it disappeared 1 week after cerebral ischemia. The expression of tight junction proteins was also significantly deceased 24 h after MCAO and then gradually recovered at 72 h and 1 week after MCAO. The level of YAP phosphorylation was first significantly decreased 24 h after MCAO and then increased 72 h and 1 week after MCAO, accompanied by nuclear YAP translocation. The underlying mechanism is TDP43-CTFs35-mediated inhibition of Hippo signaling pathway activity through the dephosphorylation of MST1/2, which leads to the inhibition of YAP phosphorylation and the subsequent impairment of brain EC migration and tight junction protein expression. This study provides new insights into the mechanisms of brain vascular EC regulation, which may impact on BBB integrity after cerebral ischemic injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

Abbreviations

BBB:

Blood-brain barrier

ECs:

Endothelial cells

CNS:

Central nerve system

OGD:

Oxygen-glucose deprivation

LPS:

Lipopolysaccharides

TJ:

Tight junction

YAP:

YES-associated protein

TDP-43:

TAR DNA-binding protein 43

MCAO:

Middle cerebral artery occlusion

CTFs:

C-terminal TDP-43 fragments

CMV:

Cytomegalovirus immediate-early enhancer and promoter

ZOs:

Zonula occludens

References

  1. Zhang J, Ji JY, Yu M, Overholtzer M, Smolen GA, Wang R, Brugge JS, Dyson NJ et al (2009) YAP-dependent induction of amphiregulin identifies a non-cell-autonomous component of the Hippo pathway. Nat Cell Biol 11(12):1444–1450. https://doi.org/10.1038/ncb1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, Xie J, Ikenoue T et al (2007) Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 21(21):2747–2761. https://doi.org/10.1101/gad.1602907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang H, Pasolli HA, Fuchs E (2011) Yes-associated protein (YAP) transcriptional coactivator functions in balancing growth and differentiation in skin. Proc Natl Acad Sci U S A 108(6):2270–2275. https://doi.org/10.1073/pnas.1019603108

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pan D (2010) The hippo signaling pathway in development and cancer. Dev Cell 19(4):491–505. https://doi.org/10.1016/j.devcel.2010.09.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Taha Z, Janse van Rensburg HJ, Yang X (2018) The Hippo pathway: immunity and cancer. Cancers 10(4):94. https://doi.org/10.3390/cancers10040094

  6. Harvey KF, Zhang X, Thomas DM (2013) The Hippo pathway and human cancer. Nat Rev Cancer 13(4):246–257. https://doi.org/10.1038/nrc3458

    Article  CAS  PubMed  Google Scholar 

  7. Choi HJ, Zhang H, Park H, Choi KS, Lee HW, Agrawal V, Kim YM, Kwon YG (2015) Yes-associated protein regulates endothelial cell contact-mediated expression of angiopoietin-2. Nat Commun 6:6943. https://doi.org/10.1038/ncomms7943

    Article  CAS  PubMed  Google Scholar 

  8. Marti P, Stein C, Blumer T, Abraham Y, Dill MT, Pikiolek M, Orsini V, Jurisic G et al (2015) YAP promotes proliferation, chemoresistance, and angiogenesis in human cholangiocarcinoma through TEAD transcription factors. Hepatology 62(5):1497–1510. https://doi.org/10.1002/hep.27992

    Article  CAS  PubMed  Google Scholar 

  9. Cheng J, Wang S, Dong Y, Yuan Z (2020) The role and regulatory mechanism of Hippo signaling components in the neuronal system. Front Immunol 11:281. https://doi.org/10.3389/fimmu.2020.00281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Oka T, Schmitt AP, Sudol M (2012) Opposing roles of angiomotin-like-1 and zona occludens-2 on pro-apoptotic function of YAP. Oncogene 31(1):128–134. https://doi.org/10.1038/onc.2011.216

    Article  CAS  PubMed  Google Scholar 

  11. Park R, Moon UY, Park JY, Hughes LJ, Johnson RL, Cho S-H, Kim S (2016) Yap is required for ependymal integrity and is suppressed in LPA-induced hydrocephalus. Nat Commun 7(1):10329. https://doi.org/10.1038/ncomms10329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gong P, Zhang Z, Zou C, Tian Q, Chen X, Hong M, Liu X, Chen Q et al (2019) Hippo/YAP signaling pathway mitigates blood-brain barrier disruption after cerebral ischemia/reperfusion injury. Behav Brain Res 356:8–17. https://doi.org/10.1016/j.bbr.2018.08.003

    Article  CAS  PubMed  Google Scholar 

  13. Sakabe M, Fan J, Odaka Y, Liu N, Hassan A, Duan X, Stump P, Byerly L et al (2017) YAP/TAZ-CDC42 signaling regulates vascular tip cell migration. Proc Natl Acad Sci U S A 114(41):10918–10923. https://doi.org/10.1073/pnas.1704030114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gao J, Wang L, Huntley ML, Perry G, Wang X (2018) Pathomechanisms of TDP-43 in neurodegeneration. J Neurochem. https://doi.org/10.1111/jnc.14327

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lane CA, Hardy J, Schott JM (2018) Alzheimer’s disease. Eur J Neurol 25(1):59–70. https://doi.org/10.1111/ene.13439

    Article  CAS  PubMed  Google Scholar 

  16. Zuo X, Zhou J, Li Y, Wu K, Chen Z, Luo Z, Zhang X, Liang Y et al (2021) TDP-43 aggregation induced by oxidative stress causes global mitochondrial imbalance in ALS. Nat Struct Mol Biol 28(2):132–142. https://doi.org/10.1038/s41594-020-00537-7

    Article  CAS  PubMed  Google Scholar 

  17. Zhao W, Beers DR, Bell S, Wang J, Wen S, Baloh RH, Appel SH (2015) TDP-43 activates microglia through NF-kappaB and NLRP3 inflammasome. Exp Neurol 273:24–35. https://doi.org/10.1016/j.expneurol.2015.07.019

    Article  CAS  PubMed  Google Scholar 

  18. Zamudio F, Loon AR, Smeltzer S, Benyamine K, Navalpur Shanmugam NK, Stewart NJF, Lee DC et al (2020) TDP-43 mediated blood-brain barrier permeability and leukocyte infiltration promote neurodegeneration in a low-grade systemic inflammation mouse model. J Neuroinflammation 17(1):283–283. https://doi.org/10.1186/s12974-020-01952-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ruck T, Bittner S, Epping L, Herrmann AM, Meuth SG (2014) Isolation of primary murine brain microvascular endothelial cells. J Vis Exp JoVE(93):e52204. https://doi.org/10.3791/52204

    Article  CAS  Google Scholar 

  20. Guo F, Zheng Y (2004) Involvement of Rho family GTPases in p19Arf- and p53-mediated proliferation of primary mouse embryonic fibroblasts. Mol Cell Biol 24(3):1426–1438. https://doi.org/10.1128/MCB.24.3.1426-1438.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xin M, Kim Y, Sutherland LB, Qi X, McAnally J, Schwartz RJ, Richardson JA, Bassel-Duby R et al (2011) Regulation of insulin-like growth factor signaling by Yap governs cardiomyocyte proliferation and embryonic heart size. Sci Signal 4(196):ra70. https://doi.org/10.1126/scisignal.2002278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee M, Cho T, Jantaratnotai N, Wang YT, McGeer E, McGeer PL (2010) Depletion of GSH in glial cells induces neurotoxicity: relevance to aging and degenerative neurological diseases. FASEB J 24(7):2533–2545. https://doi.org/10.1096/fj.09-149997

    Article  CAS  PubMed  Google Scholar 

  23. Zhou C, Liu C, Liu W, Chen W, Yin Y, Li CW, Hsu JL, Sun J, Zhou Q, Li H, Hu B, Fu P, Atyah M, Ma Q, Xu Y, Dong Q, Hung MC, Ren N (2020) SLFN11 inhibits hepatocellular carcinoma tumorigenesis and metastasis by targeting RPS4X via mTOR pathway. Theranostics 10(10):4627–4643. https://doi.org/10.7150/thno.42869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sobecki M, Mrouj K, Camasses A, Parisis N, Nicolas E, Llères D, Gerbe F, Prieto S et al (2016) The cell proliferation antigen Ki-67 organises heterochromatin. ELife 5:e13722. https://doi.org/10.7554/eLife.13722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Diermeier-Daucher S, Clarke ST, Hill D, Vollmann-Zwerenz A, Bradford JA, Brockhoff G (2009) Cell type specific applicability of 5-ethynyl-2′-deoxyuridine (EdU) for dynamic proliferation assessment in flow cytometry. Cytometry Part A :J Int Soc Anal Cytol 75(6):535–546. https://doi.org/10.1002/cyto.a.20712

    Article  CAS  Google Scholar 

  26. Hao J, Mdzinarishvili A, Abbruscato TJ, Klein J, Geldenhuys WJ, Van der Schyf CJ, Bickel U (2008) Neuroprotection in mice by NGP1-01 after transient focal brain ischemia. Brain Res 1196:113–120. https://doi.org/10.1016/j.brainres.2007.11.075

    Article  CAS  PubMed  Google Scholar 

  27. Karaman R, Halder G (2018) Cell junctions in Hippo signaling. Cold Spring Harb Perspect Biol 10(5):a028753. https://doi.org/10.1101/cshperspect.a028753

  28. Igaz LM, Kwong LK, Chen-Plotkin A, Winton MJ, Unger TL, Xu Y, Neumann M, Trojanowski JQ, Lee VM (2009) Expression of TDP-43 C-terminal fragments in vitro recapitulates pathological features of TDP-43 proteinopathies. J Biol Chem 284(13):8516–8524. https://doi.org/10.1074/jbc.M809462200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Berning BA, Walker AK (2019) The pathobiology of TDP-43 C-terminal fragments in ALS and FTLD. Front Neurosci 13:335. https://doi.org/10.3389/fnins.2019.00335

  30. Walker AK, Tripathy K, Restrepo CR, Ge G, Xu Y, Kwong LK, Trojanowski JQ, Lee VM (2015) An insoluble frontotemporal lobar degeneration-associated TDP-43 C-terminal fragment causes neurodegeneration and hippocampus pathology in transgenic mice. Hum Mol Genet 24(25):7241–7254. https://doi.org/10.1093/hmg/ddv424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Winton MJ, Igaz LM, Wong MM, Kwong LK, Trojanowski JQ, Lee VM (2008) Disturbance of nuclear and cytoplasmic TAR DNA-binding protein (TDP-43) induces disease-like redistribution, sequestration, and aggregate formation. J Biol Chem 283(19):13302–13309. https://doi.org/10.1074/jbc.M800342200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Buratti E, Baralle FE (2001) Characterization and functional implications of the RNA binding properties of nuclear factor TDP-43, a novel splicing regulator of CFTR exon 9. J Biol Chem 276(39):36337–36343. https://doi.org/10.1074/jbc.M104236200

    Article  CAS  PubMed  Google Scholar 

  33. Polymenidou M, Lagier-Tourenne C, Hutt KR, Huelga SC, Moran J, Liang TY, Ling S-C, Sun E et al (2011) Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat Neurosci 14(4):459–468. https://doi.org/10.1038/nn.2779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Narayanan RK, Mangelsdorf M, Panwar A, Butler TJ, Noakes PG, Wallace RH (2013) Identification of RNA bound to the TDP-43 ribonucleoprotein complex in the adult mouse brain. Amyotroph Lateral Scler Frontotemporal degener 14(4):252–260. https://doi.org/10.3109/21678421.2012.734520

    Article  CAS  PubMed  Google Scholar 

  35. Sephton CF, Good SK, Atkin S, Dewey CM, Mayer P 3rd, Herz J, Yu G (2010) TDP-43 is a developmentally regulated protein essential for early embryonic development. J Biol Chem 285(9):6826–6834. https://doi.org/10.1074/jbc.M109.061846

    Article  CAS  PubMed  Google Scholar 

  36. Che MX, Jiang YJ, Xie YY, Jiang LL, Hu HY (2011) Aggregation of the 35-kDa fragment of TDP-43 causes formation of cytoplasmic inclusions and alteration of RNA processing. FASEB J : Official Publication Federation of American Societies for Experimental Biology 25(7):2344–2353. https://doi.org/10.1096/fj.10-174482

    Article  CAS  Google Scholar 

  37. Kreiter N, Pal A, Lojewski X, Corcia P, Naujock M, Reinhardt P, Sterneckert J, Petri S et al (2018) Age-dependent neurodegeneration and organelle transport deficiencies in mutant TDP43 patient-derived neurons are independent of TDP43 aggregation. Neurobiol Dis 115:167–181. https://doi.org/10.1016/j.nbd.2018.03.010

    Article  CAS  PubMed  Google Scholar 

  38. Page S, Munsell A, Al-Ahmad AJ (2016) Cerebral hypoxia/ischemia selectively disrupts tight junctions complexes in stem cell-derived human brain microvascular endothelial cells. Fluids Barriers CNS 13(1):16. https://doi.org/10.1186/s12987-016-0042-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Daneman R, Engelhardt B (2017) Brain barriers in health and disease. Neurobiol Dis 107:1–3. https://doi.org/10.1016/j.nbd.2017.05.008

    Article  PubMed  Google Scholar 

  40. Hawkins BT, Davis TP (2005) The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57(2):173–185. https://doi.org/10.1124/pr.57.2.4

    Article  CAS  PubMed  Google Scholar 

  41. Piehl C, Piontek J, Cording J, Wolburg H, Blasig IE (2010) Participation of the second extracellular loop of claudin-5 in paracellular tightening against ions, small and large molecules. Cell Mol Life Sci :CMLS 67(12):2131–2140. https://doi.org/10.1007/s00018-010-0332-8

    Article  CAS  PubMed  Google Scholar 

  42. Sandoval KE, Witt KA (2008) Blood-brain barrier tight junction permeability and ischemic stroke. Neurobiol Dis 32(2):200–219. https://doi.org/10.1016/j.nbd.2008.08.005

    Article  CAS  PubMed  Google Scholar 

  43. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Sci (New York, NY) 314(5796):130–133. https://doi.org/10.1126/science.1134108

    Article  CAS  Google Scholar 

  44. Ling SC, Polymenidou M, Cleveland DW (2013) Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79(3):416–438. https://doi.org/10.1016/j.neuron.2013.07.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ito D, Seki M, Tsunoda Y, Uchiyama H, Suzuki N (2011) Nuclear transport impairment of amyotrophic lateral sclerosis-linked mutations in FUS/TLS. Ann Neurol 69(1):152–162. https://doi.org/10.1002/ana.22246

    Article  CAS  PubMed  Google Scholar 

  46. Che MX, Jiang LL, Li HY, Jiang YJ, Hu HY (2015) TDP-35 sequesters TDP-43 into cytoplasmic inclusions through binding with RNA. FEBS Lett 589(15):1920–1928. https://doi.org/10.1016/j.febslet.2015.06.009

    Article  CAS  PubMed  Google Scholar 

  47. Liu H, Wu X, Luo J, Wang X, Guo H, Feng D, Zhao L, Bai H et al (2019) Pterostilbene attenuates astrocytic inflammation and neuronal oxidative injury after ischemia-reperfusion by inhibiting NF-κB phosphorylation. Front Immunol 10:2408. https://doi.org/10.3389/fimmu.2019.02408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Mei Xin (Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA) for providing lentivirus (YAP/TAZ shRNA) as a gift and the details of transfection experiments in the current study.

Funding

This work was supported by the National Institutes of Health (NIH)/National Institute of Neurological Disorders and Stroke (NINDS) grants, R01NS105787 (J.H.), and National Natural Science Foundation of China (grant no. 81901084).

Author information

Authors and Affiliations

Authors

Contributions

The experiments were performed by Xiaotian Xu. The manuscript was written through contributions of all authors. All authors have approved the final version of the manuscript.

Corresponding author

Correspondence to Jiukuan Hao.

Ethics declarations

Ethics Approval and Consent to Participate

All animal procedures were approved by the Institutional Animal Care and Use Committees at the University of Houston and they complied with pertinent NIH guidelines for care and use of animals.

Consent for Publication

All authors of the manuscript have agreed to publish this article.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2323 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Zhang, C., Jiang, J. et al. Effect of TDP43-CTFs35 on Brain Endothelial Cell Functions in Cerebral Ischemic Injury. Mol Neurobiol 59, 4593–4611 (2022). https://doi.org/10.1007/s12035-022-02869-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02869-5

Keywords

Navigation