Skip to main content

Advertisement

Log in

Interleukin-17A Contributed to the Damage of Blood-CNS Barriers During Streptococcus suis Meningitis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Streptococcus suis (S. suis) is an emerging zoonotic agent that can cause meningitis in humans with high mortality and morbidity. Meningitic S. suis can induce higher level of IL-17 than non-meningitic S. suis. Besides, IL-17A plays various roles on bacterial clearance or disruption of blood-CNS barriers through the downregulation and reorganization of tight junction (TJ) molecules. However, it remains to be elucidated for the role of IL-17A on the infection with meningitic S. suis. Here, we found that meningitic S. suis infection could not only cause acute death due to the damage of multiple organs, but also cause meningitis and clinical nervous signs since 60 h of post-infection due to the penetration of blood-CNS barriers after lasting bacteremia. In contrast, the mice with deficiency of il17a gene could not significantly change the acute inflammatory response and acute death, but it could not show obvious meningitis and clinical nervous signs caused by the meningitic S. suis infection. In addition, we also found that IL-17A could inhibit the transcription and expression of TJ proteins that facilitated the leakage of blood-CNS barriers since 60 h of post-infection during meningitic S. suis infection. Thus, our findings demonstrated that IL-17A could downregulate TJ proteins, which undoubtedly facilitated the leakage of blood-CNS barriers for bacterial invasion and then caused S. suis meningitis, providing potential targets for future prevention and treatment of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Please contact the corresponding author upon reasonable request.

References

  1. El Kareh A, El Hage S, Safi S, Assouad E, Mokled E, Salameh P (2020) Epidemiology of bacterial meningitis in Lebanon from 2011 to 2019. J Clin Neurosci 81:32–36. https://doi.org/10.1016/j.jocn.2020.09.011

    Article  CAS  PubMed  Google Scholar 

  2. Collaborators GBDM (2018) Global, regional, and national burden of meningitis, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 17:1061–1082. https://doi.org/10.1016/S1474-4422(18)30387-9

    Article  Google Scholar 

  3. Zhao Z, Shang X, Chen Y, Zheng Y, Huang W, Jiang H, Lv Q, Kong D, Jiang Y, Liu P (2020) Bacteria elevate extracellular adenosine to exploit host signaling for blood-brain barrier disruption. Virulence 11:980–994. https://doi.org/10.1080/21505594.2020.1797352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Erdem H, Inan A, Guven E, Hargreaves S, Larsen L, Shehata G, Pernicova E, Khan E, Bastakova L, Namani S et al (2017) The burden and epidemiology of community-acquired central nervous system infections: a multinational study. Eur J Clin Microbiol Infect Dis 36:1595–1611. https://doi.org/10.1007/s10096-017-2973-0

    Article  CAS  PubMed  Google Scholar 

  5. van de Beek D, Brouwer M, Hasbun R, Koedel U, Whitney CG, Wijdicks E (2016) Community-acquired bacterial meningitis. Nat Rev Dis Primers 2:16074. https://doi.org/10.1038/nrdp.2016.74

    Article  PubMed  Google Scholar 

  6. Coureuil M, Lecuyer H, Bourdoulous S, Nassif X (2017) A journey into the brain: insight into how bacterial pathogens cross blood-brain barriers. Nat Rev Microbiol 15:149–159. https://doi.org/10.1038/nrmicro.2016.178

    Article  CAS  PubMed  Google Scholar 

  7. Segura M(2009) Streptococcus suis: an emerging human threat. J Infect Dis, 199:4-6.doi: 10.1086/594371

  8. Mai NT, Hoa NT, Nga TV, Linh le D, Chau TT, Sinh DX, Phu NH, Chuong LV, Diep TS, Campbell J, et al(2008) Streptococcus suis meningitis in adults in Vietnam. Clin Infect Dis, 46:659-667.doi: 10.1086/527385

  9. Kerdsin A, Gottschalk M, Hatrongjit R, Hamada S, Akeda Y, Oishi K (2016) Fatal septic meningitis in child caused by Streptococcus suis serotype 24. Emerg Infect Dis 22:1519–1520. https://doi.org/10.3201/eid2208.160452

    Article  PubMed  PubMed Central  Google Scholar 

  10. van Samkar A, Brouwer MC, Schultsz C, van der Ende A, van de Beek D (2015) Streptococcus suis meningitis: a systematic review and meta-analysis. PLoS Negl Trop Dis, 9:e0004191.doi: 10.1371/journal.pntd.0004191

  11. Dominguez-Punaro MD, Segura M, Contreras I, Lachance C, Houde M, Lecours MP, Olivier M, Gottschalk M (2010) In vitro characterization of the microglial inflammatory response to Streptococcus suis, an important emerging zoonotic agent of meningitis. Infect Immun 78:5074–5085

    Article  CAS  PubMed Central  Google Scholar 

  12. Disson O, Lecuit M (2012) Targeting of the central nervous system by Listeria monocytogenes. Virulence 3:213–221. https://doi.org/10.4161/viru.19586

    Article  PubMed  PubMed Central  Google Scholar 

  13. McGill F, Heyderman RS, Panagiotou S, Tunkel AR, Solomon T (2016) Acute bacterial meningitis in adults. Lancet 388:3036–3047. https://doi.org/10.1016/S0140-6736(16)30654-7

    Article  PubMed  Google Scholar 

  14. Kim KS (2008) Mechanisms of microbial traversal of the blood-brain barrier. Nat Rev Microbiol 6:625–634. https://doi.org/10.1038/nrmicro1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Doran KS, Fulde M, Gratz N, Kim BJ, Nau R, Prasadarao N, Schubert-Unkmeir A, Tuomanen EI, Valentin-Weigand P (2016) Host-pathogen interactions in bacterial meningitis. Acta Neuropathol 131:185–209. https://doi.org/10.1007/s00401-015-1531-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Takeuchi D, Akeda Y, Nakayama T, Kerdsin A, Sano Y, Kanda T, Hamada S, Dejsirilert S, Oishi K (2014) The contribution of suilysin to the pathogenesis of Streptococcus suis meningitis. J Infect Dis 209:1509–1519. https://doi.org/10.1093/infdis/jit661

    Article  CAS  PubMed  Google Scholar 

  17. Lv Q, Hao H, Bi L, Zheng Y, Zhou X, Jiang Y (2014) Suilysin remodels the cytoskeletons of human brain microvascular endothelial cells by activating RhoA and Rac1 GTPase. Protein Cell 5:261–264. https://doi.org/10.1007/s13238-014-0037-0

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rui L, Weiyi L, Yu M, Hong Z, Jiao Y, Zhe M, Hongjie F (2018) The serine/threonine protein kinase of Streptococcus suis serotype 2 affects the ability of the pathogen to penetrate the blood-brain barrier. Cell Microbiol:e12862. https://doi.org/10.1111/cmi.12862

  19. Jobin MC, Gottschalk M, Grenier D (2006) Upregulation of prostaglandin E2 and matrix metalloproteinase 9 production by human macrophage-like cells: synergistic effect of capsular material and cell wall from Streptococcus suis. Microb Pathog 40:29–34. https://doi.org/10.1016/j.micpath.2005.10.003

    Article  CAS  PubMed  Google Scholar 

  20. Tenenbaum T, Matalon D, Adam R, Seibt A, Wewer C, Schwerk C, Galla HJ, Schroten H (2008) Dexamethasone prevents alteration of tight junction-associated proteins and barrier function in porcine choroid plexus epithelial cells after infection with Streptococcus suis in vitro. Brain Res 1229:1–17. https://doi.org/10.1016/j.brainres.2008.06.118

    Article  CAS  PubMed  Google Scholar 

  21. Dominguez-Punaro MC, Segura M, Plante MM, Lacouture S, Rivest S, Gottschalk M(2007) Streptococcus suis Serotype 2, an important swine and human pathogen, induces strong systemic and cerebral inflammatory responses in a mouse model of infection. The Journal of Immunology, 179:1842-1854.doi: 10.4049/jimmunol.179.3.1842

  22. Gottschalk M, Xu J, Calzas C, Segura M(2010) Streptococcus suis: a new emerging or an old neglected zoonotic pathogen? Future Microbiol, 5:371-391

  23. Liu HT, Zhu S, Sun YY, Li N, Gu JM, Sun CJ, Feng X, Han WY, Jiang JX, Lei LC (2017) Selection of potential virulence factors contributing to Streptococcus suis serotype 2 penetration into the blood-brain barrier in an in vitro co-culture model. Journal of Microbiology and Biotechnology 27:161–170

    Article  CAS  PubMed  Google Scholar 

  24. Vanier G, Fittipaldi N, Slater JD, Dominguez-Punaro Mde L, Rycroft AN, Segura M, Maskell DJ, Gottschalk M (2009) New putative virulence factors of Streptococcus suis involved in invasion of porcine brain microvascular endothelial cells. Microb Pathog 46:13–20

    Article  CAS  PubMed  Google Scholar 

  25. Wang J, Kong D, Zhang S, Jiang H, Zheng Y, Zang Y, Hao H, Jiang Y (2015) Interaction of fibrinogen and muramidase-released protein promotes the development of Streptococcus suis meningitis. Front Microbiol 6:1001. https://doi.org/10.3389/fmicb.2015.01001

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yang XP, Fu JY, Yang RC, Liu WT, Zhang T, Yang B, Miao L, Dou BB, Tan C, Chen HC, Wang XR (2016) EGFR transactivation contributes to neuroinflammation in Streptococcus suis meningitis. J Neuroinflammation, 13:274.doi: 10.1186/s12974-016-0734-0

  27. Rungelrath V, Weisse C, Schutze N, Muller U, Meurer M, Rohde M, Seele J, Valentin-Weigand P, Kirschfink M, Beineke A, et al(2018) IgM cleavage by Streptococcus suis reduces IgM bound to the bacterial surface and is a novel complement evasion mechanism. Virulence, 9:1314-1337.doi: 10.1080/21505594.2018.1496778

  28. Sun Y, Li N, Zhang J, Liu H, Liu J, Xia X, Sun C, Feng X, Gu J, Du C et al (2016) Enolase of Streptococcus Suis serotype 2 enhances blood-brain barrier permeability by inducing IL-8 release. Inflammation 39:718–726. https://doi.org/10.1007/s10753-015-0298-7

    Article  CAS  PubMed  Google Scholar 

  29. Seele J, Tauber SC, Bunkowski S, Baums CG, Valentin-Weigand P, de Buhr N, Beineke A, Iliev AI, Bruck W, Nau R (2018) The inflammatory response and neuronal injury in Streptococcus suis meningitis. BMC Infect Dis 18:297. https://doi.org/10.1186/s12879-018-3206-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. OuYang X, Guo J, Lv Q, Jiang H, Zheng Y, Liu P, Zhao T, Kong D, Hao H, Jiang Y (2020) TRIM32 drives pathogenesis in streptococcal toxic shock-like syndrome and Streptococcus suis meningitis by regulating innate immune responses. Infect Immun 88. https://doi.org/10.1128/IAI.00957-19

  31. Lin L, Xu L, Lv W, Han L, Xiang Y, Fu L, Jin M, Zhou R, Chen H, Zhang A (2019) An NLRP3 inflammasome-triggered cytokine storm contributes to Streptococcal toxic shock-like syndrome (STSLS). PLoS Pathog 15:e1007795. https://doi.org/10.1371/journal.ppat.1007795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xu L, Lin L, Lu X, Xiao P, Liu R, Wu M, Jin M, Zhang A (2021) Acquiring high expression of suilysin enable non-epidemic Streptococcus suis to cause Streptococcal toxic shock-like syndrome (STSLS) through NLRP3 inflammasome hyperactivation. Emerg Microbes Infect:1–26. https://doi.org/10.1080/22221751.2021.1908098

  33. Sun Y, Liu H, Du R, Li S, Qu G, Zhu R, Zhao S, Gu J, Sun C, Feng X et al (2018) Characteristic comparison of meningitis and non-meningitis of Streptococcus suis in an experimentally infected porcine model. Inflammation 41:368–377. https://doi.org/10.1007/s10753-017-0692-4

    Article  CAS  PubMed  Google Scholar 

  34. Chen K, Eddens T, Trevejo-Nunez G, Way EE, Elsegeiny W, Ricks DM, Garg AV, Erb CJ, Bo MH, Wang T et al (2016) IL-17 receptor signaling in the lung epithelium is required for mucosal chemokine gradients and pulmonary host defense against K. pneumoniae. Cell Host & Microbe 20:596–605. https://doi.org/10.1016/j.chom.2016.10.003

    Article  CAS  Google Scholar 

  35. Cho JS, Pietras EM, Garcia NC, Ramos RI, Farzam DM, Monroe HR, Magorien JE, Blauvelt A, Kolls JK, Cheung AL et al (2010) IL-17 is essential for host defense against cutaneous Staphylococcus aureus infection in mice. Journal of Clinical Investigation 120:1762–1773. https://doi.org/10.1172/Jci40891

    Article  Google Scholar 

  36. Isailovic N, Daigo K, Mantovani A, Selmi C (2015) Interleukin-17 and innate immunity in infections and chronic inflammation. J Autoimmun 60:1–11. https://doi.org/10.1016/j.jaut.2015.04.006

    Article  CAS  PubMed  Google Scholar 

  37. Conti HR, Bruno VM, Childs EE, Daugherty S, Hunter JP, Mengesha BG, Saevig DL, Hendricks MR, Coleman BM, Brane L et al (2016) IL-17 receptor signaling in oral epithelial cells is critical for protection against oropharyngeal candidiasis. Cell Host & Microbe 20:606–617. https://doi.org/10.1016/j.chom.2016.10.001

    Article  CAS  Google Scholar 

  38. Dungan LS, Mills KH (2011) Caspase-1-processed IL-1 family cytokines play a vital role in driving innate IL-17. Cytokine 56:126–132. https://doi.org/10.1016/j.cyto.2011.07.007

    Article  CAS  PubMed  Google Scholar 

  39. Waisman A, Hauptmann J, Regen T (2015) The role of IL-17 in CNS diseases. Acta Neuropathol 129:625–637. https://doi.org/10.1007/s00401-015-1402-7

    Article  CAS  PubMed  Google Scholar 

  40. Huppert J, Closhen D, Croxford A, White R, Kulig P, Pietrowski E, Bechmann I, Becher B, Luhmann HJ, Waisman A, Kuhlmann CRW (2010) Cellular mechanisms of IL-17-induced blood-brain barrier disruption. Faseb Journal 24:1023–1034

    Article  CAS  PubMed  Google Scholar 

  41. Asano T, Ichiki K, Koizumi S, Kaizu K, Hatori T, Fujino O, Mashiko K, Sakamoto Y, Miyasho T, Fukunaga Y (2010) IL-17 is elevated in cerebrospinal fluids in bacterial meningitis in children. Cytokine 51:101–106. https://doi.org/10.1016/j.cyto.2010.03.001

    Article  CAS  PubMed  Google Scholar 

  42. Chen T, Wang C, Hu L, Lu H, Song F, Zhang A, Wang X, Chen H, Tan C (2021) Evaluation of the immunoprotective effects of IF-2 GTPase and SSU05-1022 as a candidate for a Streptococcus suis subunit vaccine. Future Microbiol 16:721–729. https://doi.org/10.2217/fmb-2020-0232

    Article  CAS  PubMed  Google Scholar 

  43. Ren H, Hua Z, Meng J, Molenaar A, Bi Y, Cheng N, Zheng X (2019) Generation of Acsl4 gene knockout mouse model by CRISPR/Cas9-mediated genome engineering. Crit Rev Biomed Eng 47:419–426. https://doi.org/10.1615/CritRevBiomedEng.2019030342

    Article  PubMed  Google Scholar 

  44. Engelen-Lee JY, Brouwer MC, Aronica E, van de Beek D (2016) Pneumococcal meningitis: clinical-pathological correlations (MeninGene-Path). Acta Neuropathol Commun 4:26. https://doi.org/10.1186/s40478-016-0297-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yang R, Liu W, Miao L, Yang X, Fu J, Dou B, Cai A, Zong X, Tan C, Chen H, Wang X (2016) Induction of VEGFA and Snail-1 by meningitic Escherichia coli mediates disruption of the blood-brain barrier. Oncotarget 7:63839–63855. https://doi.org/10.18632/oncotarget.11696

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sa JK, Chang N, Lee HW, Cho HJ, Ceccarelli M, Cerulo L, Yin J, Kim SS, Caruso FP, Lee M et al (2020) Transcriptional regulatory networks of tumor-associated macrophages that drive malignancy in mesenchymal glioblastoma. Genome Biol 21:216. https://doi.org/10.1186/s13059-020-02140-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang M, Mao Y, Ramirez SH, Tuma RF, Chabrashvili T (2010) Angiotensin II induced cerebral microvascular inflammation and increased blood-brain barrier permeability via oxidative stress. Neuroscience 171:852–858. https://doi.org/10.1016/j.neuroscience.2010.09.029

    Article  CAS  PubMed  Google Scholar 

  48. Ni C, Gao S, Zheng Y, Liu P, Zhai Y, Huang W, Jiang H, Lv Q, Kong D, Jiang Y (2021) Annexin A1 attenuates neutrophil migration and IL-6 expression through Fpr2 in a mouse model of Streptococcus suis-induced meningitis. Infect Immun 89. https://doi.org/10.1128/IAI.00680-20

  49. Kumar H, Jo MJ, Choi H, Muttigi MS, Shon S, Kim BJ, Lee SH, Han IB (2018) Matrix metalloproteinase-8 inhibition prevents disruption of blood-spinal cord barrier and attenuates inflammation in rat model of spinal cord injury. Mol Neurobiol 55:2577–2590. https://doi.org/10.1007/s12035-017-0509-3

    Article  CAS  PubMed  Google Scholar 

  50. Al-Obaidi MMJ, Desa MNM (2018) Mechanisms of blood brain barrier disruption by different types of bacteria, and bacterial-host interactions facilitate the bacterial pathogen invading the brain. Cell Mol Neurobiol 38:1349–1368. https://doi.org/10.1007/s10571-018-0609-2

    Article  CAS  PubMed  Google Scholar 

  51. Goyette-Desjardins G, Auger JP, Xu J, Segura M, Gottschalk M(2014) Streptococcus suis, an important pig pathogen and emerging zoonotic agent-an update on the worldwide distribution based on serotyping and sequence typing. Emerging Microbes & Infections, 3:e45

  52. Dutkiewicz J, Sroka J, Zajac V, Wasinski B, Cisak E, Sawczyn A, Kloc A, Wojcik-Fatla A (2017) Streptococcus suis: a re-emerging pathogen associated with occupational exposure to pigs or pork products. Part I - Epidemiology. Ann Agric Environ Med, 24:683-695.doi: 10.26444/aaem/79813

  53. Fong IW (2017) Zoonotic Streptococci: a focus on Streptococcus suis. In Emerging Zoonoses: A Worldwide Perspective. Cham: Springer International Publishing: 189-21010.1007/978-3-319-50890-0_10

  54. Hohnstein FS, Meurer M, de Buhr N, von Kockritz-Blickwede M, Baums CG, Alber G, Schutze N (2020) Analysis of porcine pro- and anti-inflammatory cytokine induction by S. suis in vivo and in vitro. Pathogens 9. https://doi.org/10.3390/pathogens9010040

  55. Dutkiewicz J, Zajac V, Sroka J, Wasinski B, Cisak E, Sawczyn A, Kloc A, Wojcik-Fatla A(2018) Streptococcus suis: a re-emerging pathogen associated with occupational exposure to pigs or pork products. Part II - Pathogenesis. Ann Agric Environ Med, 25:186-203.doi: 10.26444/aaem/85651

  56. Wewer C, Seibt A, Wolburg H, Greune L, Schmidt MA, Berger J, Galla HJ, Quitsch U, Schwerk C, Schroten H, Tenenbaum T (2011) Transcellular migration of neutrophil granulocytes through the blood-cerebrospinal fluid barrier after infection with Streptococcus suis. J Neuroinflammation 8:51. https://doi.org/10.1186/1742-2094-8-51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Xu L, Lu X, Xiao P, Liu R, Xia KL, Wu MZ, Jin ML, Zhang AD (2021) Interleukin-17A contributes to bacterial clearance in a mouse model of streptococcal toxic shock-like syndrome. Pathogens 10. https://doi.org/10.3390/pathogens10060766

  58. Ge Y, Huang M, Yao YM (2020) Biology of Interleukin-17 and its pathophysiological significance in sepsis. Front Immunol 11:1558. https://doi.org/10.3389/fimmu.2020.01558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to Xiang Liu (NIH, USA) for help on discussion of the results.

Funding

This work was supported by the National Natural Science Foundation of China (31772714 and 31972649).

Author information

Authors and Affiliations

Authors

Contributions

LX and XL performed the experiments and analyzed the data, AZ and LX drafted the manuscript. PX, RL, and KX helped to analyze the data and revise the manuscript. AZ, MW, and MJ provided the material and technological support. AZ conceived the experiments and revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Anding Zhang.

Ethics declarations

Ethics Approval and Consent to Participate

All procedures performed in studies involving animals were in accordance with the Scientific Ethics Committee of Huazhong Agricultural University (Permit Number: HZAUMO-2019-048). Consent to participate is not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

Table S1. Quality test results of brain tissue RNA. (XLSX 10 kb)

ESM 2

Fig. S1. Confirmation of il17a-/- mice. a DNA sequencing of the il17a gene in the il17a-/- and il17a+/+ mice. A 23bp DNA sequence was deleted in the il17a-/- mice. b Genotyping by PCR. A 390bp DNA fragment for KO and HET. A 405bp DNA fragment for WT and HET. (TIF 3894 kb)

ESM 3

Fig. S2. Histopathological scores in the brains. Histopathological scores of brain sections from wild type mice at 60h post-infection with meningitic S. suis (n=3). Error bars represented the mean ± standard deviations. (TIF 1425 kb)

ESM 4

Fig. S3. Flow cytometric analysis of Neutrophils isolated from mice blood post-infection. The il17a-/- and il17a+/+ mice were intraperitoneally infected with meningitic S. suis strain S29 or PBS. At the indicated time points, Samples of peripheral blood (0.2 ml) were collected from tail vein and then stained with phycoerythrin (PE) anti-mouse Ly6G and Fluorescein isothiocyanate (FITC) anti-mouse/human CD11b for flow cytometric analysis. Error bars represent the mean ± standard deviations. (TIF 2167 kb)

ESM 5

Fig. S4. Immunofluorescence results of isotype antibody of ZO-1 in brain. The brain of a wild type mouse was analyzed for isotype antibody of ZO-1 via immunofluorescence to exclude unspecific signals. (TIF 3283 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Lu, X., Xiao, P. et al. Interleukin-17A Contributed to the Damage of Blood-CNS Barriers During Streptococcus suis Meningitis. Mol Neurobiol 59, 2116–2128 (2022). https://doi.org/10.1007/s12035-022-02749-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02749-y

Keywords

Navigation