Skip to main content
Log in

Virulence Factors in Klebsiella pneumoniae: A Literature Review

  • REVIEW ARTICLE
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Klebsiella pneumoniae, a member of the autochthonous human gut microbiota, utilizes a variety of virulence factors for survival and pathogenesis. Consequently, it is responsible for several human infections, including urinary tract infections, respiratory tract infections, liver abscess, meningitis, bloodstream infections, and medical device-associated infections. The main studied virulence factors in K. pneumoniae are capsule-associated, fimbriae, siderophores, Klebsiella ferric iron uptake, and the ability to metabolize allantoin. They are crucial for virulence and were associated with specific infections in the mice infection model. Notably, these factors are also prevalent in strains from the same infections in humans. However, the type and quantity of virulence factors may vary between strains, which defines the degree of pathogenicity. In this review, we summarize the main virulence factors investigated in K. pneumoniae from different human infections. We also cover the specific identification genes and their prevalence in K. pneumoniae, especially in hypervirulent strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Adeolu M, Alnajar S, Naushad S, Gupta RS (2016) Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: proposal for enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. Nov., Morgane. Int J Syst Evol Microbiol 66:5575–5599. https://doi.org/10.1099/ijsem.0.001485

    Article  CAS  PubMed  Google Scholar 

  2. Martínez J, Martínez L, Rosenblueth M, Silva J, Martínez-Romero E (2004) How are gene sequence analyses modifying bacterial taxonomy? case Klebsiella Int Microbiol 7:261–268. https://doi.org/10.2436/im.v7i4.9481

    Article  PubMed  Google Scholar 

  3. Park EA, Kim YT, Cho JH, Ryu S, Lee JH (2017) Characterization and genome analysis of novel bacteriophages infecting the opportunistic human pathogens Klebsiella oxytoca and K. pneumoniae. Arch Virol 162:1129–1139. https://doi.org/10.1007/s00705-016-3202-3

    Article  CAS  PubMed  Google Scholar 

  4. Cheng J, Zhou M, Nobrega DB et al (2021) Genetic diversity and molecular epidemiology of outbreaks of Klebsiella pneumoniae mastitis on two large Chinese dairy farms. J Dairy Sci 104:762–775. https://doi.org/10.3168/jds.2020-19325

    Article  CAS  PubMed  Google Scholar 

  5. Tzouvelekis LS, Miriagou V, Kotsakis SD et al (2013) KPC-producing, multidrug-resistant Klebsiella pneumoniae sequence Type 258 as a typical opportunistic pathogen. Antimicrob Agents Chemother 57:5144–5146. https://doi.org/10.1128/AAC.01052-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Heinz E, Brindle R, Morgan-McCalla A, Peters K, Thomson NR (2019) Caribbean multi-centre study of Klebsiella pneumoniae: whole-genome sequencing, antimicrobial resistance and virulence factors. Microb Genom. https://doi.org/10.1099/mgen.0.000266

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pomakova DK, Hsiao CB, Beanan JM et al (2012) Clinical and phenotypic differences between classic and hypervirulent Klebsiella pneumoniae: an emerging and under-recognized pathogenic variant. Eur J Clin Microbiol Infect Dis 31:981–989. https://doi.org/10.1007/s10096-011-1396-6

    Article  CAS  PubMed  Google Scholar 

  8. Sato S, Aoyama T, Uejima Y et al (2019) Pyogenic liver abscess due to hypervirulent Klebsiella pneumoniae in a 14-year-old boy. J Infect Chemother 25:137–140. https://doi.org/10.1016/j.jiac.2018.07.006

    Article  PubMed  Google Scholar 

  9. Paczosa MK, Mecsas J (2016) Klebsiella pneumoniae: going on the offense with a strong defense. Microbiol Mol Biol Rev 80:629–661. https://doi.org/10.1128/mmbr.00078-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tsay RW, Siu LK, Fung CP, Chang FY (2002) Characteristics of bacteremia between community-acquired and nosocomial Klebsiella pneumoniae infection. Arch Intern Med 162:1021. https://doi.org/10.1001/archinte.162.9.1021

    Article  PubMed  Google Scholar 

  11. Gonzalez-Ferrer S, Peñaloza HF, Budnick JA et al (2021) Finding order in the chaos: outstanding questions in Klebsiella pneumoniae pathogenesis. Infect Immun 89:e00693-e720. https://doi.org/10.1128/IAI.00693-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu C, Guo J (2019) Hypervirulent Klebsiella pneumoniae (hypermucoviscous and aerobactin positive) infection over 6 years in the elderly in China: antimicrobial resistance patterns, molecular epidemiology and risk factor. Ann Clin Microbiol Antimicrob. https://doi.org/10.1186/s12941-018-0302-9

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhang Y, Zhao C, Wang Q et al (2016) High prevalence of hypervirulent Klebsiella pneumoniae infection in China: geographic distribution, clinical characteristics, and antimicrobial resistance. Antimicrob Agents Chemother 60:6115–6120. https://doi.org/10.1128/AAC.01127-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shon AS, Bajwa RPS, Russo TA (2013) Hypervirulent (hypermucoviscous) Klebsiella pneumoniae: a new and dangerous breed. Virulence 4:107–118. https://doi.org/10.4161/viru.22718

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rafat C, Messika J, Barnaud G et al (2018) Hypervirulent Klebsiella pneumoniae, a 5-year study in a French ICU. J Med Microbiol 67:1083–1089. https://doi.org/10.1099/jmm.0.000788

    Article  CAS  PubMed  Google Scholar 

  16. Yamamoto H, Iijima A, Kawamura K, Matsuzawa Y, Suzuki M, Arakawa Y (2020) Fatal fulminant community-acquired pneumonia caused by hypervirulent Klebsiella pneumoniae K2-ST86. Medicine 99:e20360. https://doi.org/10.1097/MD.0000000000020360

    Article  PubMed  PubMed Central  Google Scholar 

  17. Coutinho RL, Visconde MF, Descio FJ et al (2014) Community-acquired invasive liver abscess syndrome caused by a K1 serotype Klebsiella pneumoniae isolate in Brazil: a case report of hypervirulent ST23. Mem Inst Oswaldo Cruz 109:970–971. https://doi.org/10.1590/0074-0276140196

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yu WL, Ko WC, Cheng KC et al (2006) Association between rmpA and magA genes and clinical syndromes caused by Klebsiella pneumoniae in Taiwan. Clin Infect Dis 42:1351–1358. https://doi.org/10.1086/503420

    Article  CAS  PubMed  Google Scholar 

  19. Oikonomou KG, Aye M (2017) Klebsiella pneumoniae Liver Abscess: a case series of six Asian patients. Am J Case Rep 18:1028–1033. https://doi.org/10.12659/AJCR.905191

    Article  PubMed  PubMed Central  Google Scholar 

  20. Maruki T, Taniyama D, Tsuchiya Y, Adachi T (2020) Breakthrough and persistent bacteremia due to serotype K1 Klebsiella pneumoniae in an immunocompetent patient. IDCases 21:e00893. https://doi.org/10.1016/j.idcr.2020.e00893

    Article  PubMed  PubMed Central  Google Scholar 

  21. Shaidullina E, Shelenkov A, Yanushevich Y et al (2020) Antimicrobial resistance and genomic characterization of OXA-48- and CTX-M-15-Co-producing hypervirulent Klebsiella pneumoniae ST23 recovered from nosocomial outbreak. Antibiotics 9:862. https://doi.org/10.3390/antibiotics9120862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gu D, Dong N, Zheng Z et al (2018) A fatal outbreak of ST11 carbapenem-resistant hypervirulent Klebsiella pneumoniae in a Chinese hospital: a molecular epidemiological study. Lancet Infect Dis 18:37–46. https://doi.org/10.1016/S1473-3099(17)30489-9

    Article  PubMed  Google Scholar 

  23. Yao H, Qin S, Chen S, Shen J, Du XD (2018) Emergence of carbapenem-resistant hypervirulent Klebsiella pneumoniae. Lancet Infect Dis 18:25. https://doi.org/10.1016/S1473-3099(17)30628-X

    Article  PubMed  Google Scholar 

  24. Shankar C, Jacob JJ, Vasudevan K et al (2020) Emergence of multidrug resistant hypervirulent ST23 Klebsiella pneumoniae: multidrug resistant plasmid acquisition drives evolution. Front Cell Infect Microbiol. https://doi.org/10.3389/fcimb.2020.575289

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chen Y, Marimuthu K, Teo J et al (2020) Acquisition of plasmid with carbapenem-resistance gene bla KPC2 in hypervirulent Klebsiella pneumoniae. Singapore Emerg Infect Dis 26:549–559. https://doi.org/10.3201/eid2603.191230

    Article  CAS  PubMed  Google Scholar 

  26. Feldman MF, Mayer Bridwell AE, Scott NE et al (2019) A promising bioconjugate vaccine against hypervirulent Klebsiella pneumoniae. Proc Natl Acad Sci 116:18655–18663. https://doi.org/10.1073/pnas.1907833116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cryz SJ, Furer E, Germanier R (1985) Safety and immunogenicity of Klebsiella pneumoniae K1 capsular polysaccharide vaccine in humans. J Infect Dis 151:665–671. https://doi.org/10.1093/infdis/151.4.665

    Article  PubMed  Google Scholar 

  28. Edelman R, Talor DN, Wasserman SS et al (1994) Phase 1 trial of a 24-valent Klebsiella capsular polysaccharide vaccine and an eight-valent Pseudomonas O-polysaccharide conjugate vaccine administered simultaneously. Vaccine 12:1288–1294. https://doi.org/10.1016/S0264-410X(94)80054-4

    Article  CAS  PubMed  Google Scholar 

  29. Ravinder M, Liao K-S, Cheng Y-Y et al (2020) A synthetic carbohydrate-protein conjugate vaccine candidate against Klebsiella pneumoniae serotype K2. J Org Chem 85:15964–15997. https://doi.org/10.1021/acs.joc.0c01404

    Article  CAS  PubMed  Google Scholar 

  30. Whitfield C (2006) Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu Rev Biochem 75:39–68. https://doi.org/10.1146/annurev.biochem.75.103004.142545

    Article  CAS  PubMed  Google Scholar 

  31. Wyres KL, Wick RR, Gorrie C et al (2016) Identification of Klebsiella capsule synthesis loci from whole genome data. Microb Genom 2:e000102. https://doi.org/10.1099/mgen.0.000102

    Article  PubMed  PubMed Central  Google Scholar 

  32. Liao CH, Huang YT, Chang CY, Hsu HS, Hsueh PR (2014) Capsular serotypes and multilocus sequence types of bacteremic Klebsiella pneumoniae isolates associated with different types of infections. Eur J Clin Microbiol Infect Dis 33:365–369. https://doi.org/10.1007/s10096-013-1964-z

    Article  CAS  PubMed  Google Scholar 

  33. Struve C, Roe CC, Stegger M et al (2015) Mapping the evolution of hypervirulent Klebsiella pneumoniae. MBio 6:e00630-e715. https://doi.org/10.1128/mBio.00630-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jung SW, Chae HJ, Park YJ et al (2013) Microbiological and clinical characteristics of bacteraemia caused by the hypermucoviscosity phenotype of Klebsiella pneumoniae in Korea. Epidemiol Infect 141:334–340. https://doi.org/10.1017/S0950268812000933

    Article  CAS  PubMed  Google Scholar 

  35. Lin TL, Hsieh PF, Huang YT et al (2014) Isolation of a bacteriophage and its depolymerase specific for K1 capsule of Klebsiella pneumoniae: implication in typing and treatment. J Infect Dis 210:1734–1744. https://doi.org/10.1093/infdis/jiu332

    Article  CAS  PubMed  Google Scholar 

  36. Wei DD, Wan Deng Liu LGQY (2016) Emergence of KPC-producing Klebsiella pneumoniae hypervirulent clone of capsular serotype K1 that belongs to sequence type 11 in mainland China. Diagn Microbiol Infect Dis 85:192–194. https://doi.org/10.1016/j.diagmicrobio.2015.03.012

    Article  CAS  PubMed  Google Scholar 

  37. Tan TY, Ong M, Cheng Y, Ng LSY (2019) Hypermucoviscosity, rmpA, and aerobactin are associated with community-acquired Klebsiella pneumoniae bacteremic isolates causing liver abscess in Singapore. J Microbiol Immunol Infect 52:30–34. https://doi.org/10.1016/j.jmii.2017.07.003

    Article  CAS  PubMed  Google Scholar 

  38. Molton JS, Lee IR, Bertrand D et al (2021) Stool metagenome analysis of patients with Klebsiella pneumoniae liver abscess and their domestic partners. Int J Infect Dis 107:1–4. https://doi.org/10.1016/j.ijid.2021.04.012

    Article  CAS  PubMed  Google Scholar 

  39. Luo Y, Wang Y, Ye L, Yang J (2014) Molecular epidemiology and virulence factors of pyogenic liver abscess causing Klebsiella pneumoniae in China. Clin Microbiol Infect 20:O818–O824. https://doi.org/10.1111/1469-0691.12664

    Article  CAS  PubMed  Google Scholar 

  40. Yeh KM, Chiu SK, Lin CL et al (2016) Surface antigens contribute differently to the pathophysiological features in serotype K1 and K2 Klebsiella pneumoniae strains isolated from liver abscesses. Gut Pathog 8:4. https://doi.org/10.1186/s13099-016-0085-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kumabe A, Kenzaka T (2014) String test of hypervirulent Klebsiella pneumonia. QJM 107:1053–1053. https://doi.org/10.1093/qjmed/hcu124

    Article  CAS  PubMed  Google Scholar 

  42. Russo TA, Olson R, Fang CT et al (2018) Identification of biomarkers for differentiation of hypervirulent Klebsiella pneumoniae from classical K pneumoniae. J Clin Microbiol. https://doi.org/10.1128/JCM.00776-18

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lee IR, Molton JS, Wyres KL et al (2016) Differential host susceptibility and bacterial virulence factors driving Klebsiella liver abscess in an ethnically diverse population. Sci Rep 6:29316. https://doi.org/10.1038/srep29316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lin JC, Koh T, Lee N et al (2014) Genotypes and virulence in serotype K2 Klebsiella pneumoniae from liver abscess and non-infectious carriers in Hong Kong. Singapore Taiwan Gut Pathog 6:21. https://doi.org/10.1186/1757-4749-6-21

    Article  CAS  PubMed  Google Scholar 

  45. Cubero M, Grau I, Tubau F et al (2016) Hypervirulent Klebsiella pneumoniae clones causing bacteraemia in adults in a teaching hospital in Barcelona, Spain (2007–2013). Clin Microbiol Infect 22:154–160. https://doi.org/10.1016/j.cmi.2015.09.025

    Article  CAS  PubMed  Google Scholar 

  46. Namikawa H, Niki M, Niki M et al (2019) Clinical and virulence factors related to the 30-day mortality of Klebsiella pneumoniae bacteremia at a tertiary hospital: a case–control study. Eur J Clin Microbiol Infect Dis 38:2291–2297. https://doi.org/10.1007/s10096-019-03676-y

    Article  CAS  PubMed  Google Scholar 

  47. Zhou M, Lan Y, Wang S et al (2020) Epidemiology and molecular characteristics of the type VI secretion system in Klebsiella pneumoniae isolated from bloodstream infections. J Clin Lab Anal. https://doi.org/10.1002/jcla.23459

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lan Y, Zhou M, Jian Z, Yan Q, Wang S, Liu W (2019) Prevalence of pks gene cluster and characteristics of Klebsiella pneumonia-induced bloodstream infections. J Clin Lab Anal 33:e22838. https://doi.org/10.1002/jcla.22838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yan JJ, Zheng PX, Wang MC, Tsai SH, Wang LR, Wu JJ (2015) Allocation of Klebsiella pneumoniae bloodstream isolates into four distinct groups by ompK36 typing in a Taiwanese university hospital. J Clin Microbiol 53:3256–3263. https://doi.org/10.1128/JCM.01152-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ku YH, Chuang YC, Chen CC et al (2017) Klebsiella pneumoniae Isolates from meningitis: epidemiology. Virulence Antibiot Res Sci Rep 7:6634. https://doi.org/10.1038/s41598-017-06878-6

    Article  CAS  Google Scholar 

  51. Hsu CR, Lin TL, Chen YC, Chou HC, Wang JT (2011) The role of Klebsiella pneumoniae rmpA in capsular polysaccharide synthesis and virulence revisited. Microbiology 157:3446–3457. https://doi.org/10.1099/mic.0.050336-0

    Article  CAS  PubMed  Google Scholar 

  52. Rivero A, Gomez E, Alland D, Huang DB, Chiang T (2010) K2 Serotype Klebsiella pneumoniae causing a liver abscess associated with infective endocarditis. J Clin Microbiol 48:639–641. https://doi.org/10.1128/JCM.01779-09

    Article  PubMed  Google Scholar 

  53. Lin WH, Wang MC, Tseng CC et al (2010) Clinical and microbiological characteristics of Klebsiella pneumoniae isolates causing community-acquired urinary tract infections. Infection 38:459–464. https://doi.org/10.1007/s15010-010-0049-5

    Article  PubMed  Google Scholar 

  54. Remya PA, Shanthi M, Sekar U (2019) Characterisation of virulence genes associated with pathogenicity in Klebsiella pneumoniae. Indian J Med Microbiol 37:210–218. https://doi.org/10.4103/ijmm.IJMM_19_157

    Article  CAS  PubMed  Google Scholar 

  55. Caneiras C, Lito L, Melo-Cristino J, Duarte A (2019) Community- and hospital-acquired Klebsiella pneumoniae Urinary tract infections in Portugal: virulence and antibiotic resistance. Microorganisms 7:138. https://doi.org/10.3390/microorganisms7050138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shao C, Wang W, Liu S, Zhang Z, Jiang M, Zhang F (2021) Molecular epidemiology and drug resistant mechanism of carbapenem-resistant Klebsiella pneumoniae in elderly patients with lower respiratory tract infection. Front Public Health. https://doi.org/10.3389/fpubh.2021.669173

    Article  PubMed  PubMed Central  Google Scholar 

  57. Holt KE, Wertheim H, Zadoks RN et al (2015) Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc Natl Acad Sci USA 112:E3574–E3581. https://doi.org/10.1073/pnas.1501049112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wu CC, Huang YJ, Fung CP, Peng HL (2010) Regulation of the Klebsiella pneumoniae Kpc fimbriae by the site-specific recombinase KpcI. Microbiology 156:1983–1992. https://doi.org/10.1099/mic.0.038158-0

    Article  CAS  PubMed  Google Scholar 

  59. Alcántar-Curiel MD, Blackburn D, Saldaña Z et al (2013) Multi-functional analysis of Klebsiella pneumoniae fimbrial types in adherence and biofilm formation. Virulence 4:129–138. https://doi.org/10.4161/viru.22974

    Article  PubMed  PubMed Central  Google Scholar 

  60. Huang YJ, Liao HW, Wu CC, Peng HL (2009) MrkF is a component of type 3 fimbriae in Klebsiella pneumoniae. Res Microbiol 160:71–79. https://doi.org/10.1016/j.resmic.2008.10.009

    Article  CAS  PubMed  Google Scholar 

  61. Struve C, Bojer M, Krogfelt KA (2008) Characterization of Klebsiella pneumoniae type 1 fimbriae by detection of phase variation during colonization and infection and impact on virulence. Infect Immun 76:4055–4065. https://doi.org/10.1128/IAI.00494-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Araújo BF, Ferreira ML, de Campos PA et al (2018) Hypervirulence and biofilm production in KPC-2-producing Klebsiella pneumoniae CG258 isolated in Brazil. J Med Microbiol 67:523–528. https://doi.org/10.1099/jmm.0.000711

    Article  CAS  PubMed  Google Scholar 

  63. Wang ZC, Huang CJ, Huang YJ, Wu CC, Peng HL (2013) FimK regulation on the expression of type 1 fimbriae in Klebsiella pneumoniae CG43S3. Microbiology 159:1402–1415. https://doi.org/10.1099/mic.0.067793-0

    Article  CAS  PubMed  Google Scholar 

  64. Stahlhut SG, Chattopadhyay S, Kisiela DI et al (2013) Structural and population characterization of MrkD, the adhesive subunit of type 3 fimbriae. J Bacteriol 195:5602–5613. https://doi.org/10.1128/JB.00753-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Marques C, Menezes J, Belas A et al (2019) Klebsiella pneumoniae causing urinary tract infections in companion animals and humans: population structure, antimicrobial resistance and virulence genes. J Antimicrob Chemother 74:594–602. https://doi.org/10.1093/jac/dky499

    Article  CAS  PubMed  Google Scholar 

  66. Bandeira M, Carvalho P, Duarte A, Jordao L (2014) Exploring dangerous connections between Klebsiella pneumoniae biofilms and healthcare-associated infections. Pathogens 3:720–731. https://doi.org/10.3390/pathogens3030720

    Article  PubMed  PubMed Central  Google Scholar 

  67. El Fertas-Aissani R, Messai Y, Alouache S, Bakour R (2013) Virulence profiles and antibiotic susceptibility patterns of Klebsiella pneumoniae strains isolated from different clinical specimens. Pathol Biol 61:209–216. https://doi.org/10.1016/j.patbio.2012.10.004

    Article  CAS  PubMed  Google Scholar 

  68. Eghbalpoor F, Habibi M, Azizi O, Asadi Karam MR, Bouzari S (2019) Antibiotic resistance, virulence and genetic diversity of Klebsiella pneumoniae in community-and hospital-acquired urinary tract infections in Iran. Acta Microbiol Immunol Hung 66:349–366. https://doi.org/10.1556/030.66.2019.006

    Article  CAS  PubMed  Google Scholar 

  69. Tchesnokova V, Aprikian P, Kisiela D et al (2011) Type 1 fimbrial adhesin fimh elicits an immune response that enhances cell adhesion of Escherichia coli. Infect Immun 79:3895–3904. https://doi.org/10.1128/IAI.05169-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sauer MM, Jakob RP, Eras J et al (2016) Catch-bond mechanism of the bacterial adhesin FimH. Nat Commun 7:10738. https://doi.org/10.1038/ncomms10738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhou G, Mo WJ, Sebbel P et al (2001) Uroplakin Ia is the urothelial receptor for uropathogenic Escherichia coli: evidence from in vitro FimH binding. J Cell Sci 114:4095–4103. https://doi.org/10.1242/jcs.114.22.4095

    Article  CAS  PubMed  Google Scholar 

  72. Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ (2015) Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol 13:269–284. https://doi.org/10.1038/nrmicro3432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Carpenter AR, Becknell MB, Ching CB et al (2016) Uroplakin 1b is critical in urinary tract development and urothelial differentiation and homeostasis. Kidney Int 89:612–624. https://doi.org/10.1016/j.kint.2015.11.017

    Article  CAS  PubMed  Google Scholar 

  74. Struve C, Bojer M, Krogfelt KA (2009) Identification of a conserved chromosomal region encoding Klebsiella pneumoniae Type 1 and Type 3 fimbriae and assessment of the role of fimbriae in pathogenicity. Infect Immun 77:5016–5024. https://doi.org/10.1128/IAI.00585-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Vuotto C, Longo F, Pascolini C et al (2017) Biofilm formation and antibiotic resistance in Klebsiella pneumoniae urinary strains. J Appl Microbiol 123:1003–1018. https://doi.org/10.1111/jam.13533

    Article  CAS  PubMed  Google Scholar 

  76. Johnson JG, Murphy CN, Sippy J, Johnson TJ, Clegg S (2011) Type 3 fimbriae and biofilm formation are regulated by the transcriptional regulators MrkHI in Klebsiella pneumoniae. J Bacteriol 193:3453–3460. https://doi.org/10.1128/JB.00286-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fu L, Huang M, Zhang X et al (2018) Frequency of virulence factors in high biofilm formation bla producing Klebsiella pneumoniae strains from hospitals. Microb Pathog 116:168–172. https://doi.org/10.1016/j.micpath.2018.01.030

    Article  CAS  PubMed  Google Scholar 

  78. Murphy CN, Mortensen MS, Krogfelt KA, Clegg S (2013) Role of Klebsiella pneumoniae Type 1 and Type 3 fimbriae in colonizing silicone tubes implanted into the bladders of mice as a model of catheter-associated urinary tract infections. Infect Immun 81:3009–3017. https://doi.org/10.1128/IAI.00348-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bellifa S, Hassaine H, Balestrino D et al (2013) Evaluation of biofilm formation of Klebsiella pneumoniae isolated from medical devices at the university hospital of Tlemcen. Algeria Afr J Microbiol Res 7:5558–5564. https://doi.org/10.5897/AJMR12.2331

    Article  CAS  Google Scholar 

  80. Singhai M, Malik A, Shahid M, Malik M, Goyal R (2012) A study on device-related infections with special reference to biofilm production and antibiotic resistance. J Glob Infect Dis 4:193. https://doi.org/10.4103/0974-777X.103896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Maharjan G, Khadka P, Siddhi Shilpakar G, Chapagain G, Dhungana GR (2018) Catheter-associated urinary tract infection and obstinate biofilm producers. Can J Infect Dis Med Microbiol 2018:1–7. https://doi.org/10.1155/2018/7624857

    Article  Google Scholar 

  82. Niveditha SN (2012) The isolation and the biofilm formation of uropathogens in the patients with catheter associated urinary tract infections (UTIs). J Clin Diagn Res 6:1478. https://doi.org/10.7860/JCDR/2012/4367.2537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Surekha S, Lamiyan AK, Gupta V (2023) Antibiotic resistant biofilms and the quest for novel therapeutic strategies. Indian J Microbiol. https://doi.org/10.1007/s12088-023-01138-w

    Article  PubMed  Google Scholar 

  84. Lewis K (2008) Multidrug tolerance of biofilms and persister cells. Curr Top Microbiol Immunol 322:107–131. https://doi.org/10.1007/978-3-540-75418-3_6

    Article  CAS  PubMed  Google Scholar 

  85. Cassat JE, Skaar EP (2013) Iron in infection and immunity. Cell Host Microbe 13:509–519. https://doi.org/10.1016/j.chom.2013.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Holden VI, Bachman MA (2015) Diverging roles of bacterial siderophores during infection. Metallomics 7:986–995. https://doi.org/10.1039/C4MT00333K

    Article  CAS  PubMed  Google Scholar 

  87. Compain F, Babosan A, Brisse S et al (2014) Multiplex PCR for detection of seven virulence factors and K1/K2 capsular serotypes of Klebsiella pneumoniae. J Clin Microbiol 52:4377–4380. https://doi.org/10.1128/JCM.02316-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chen T, Dong G, Zhang S et al (2020) Effects of iron on the growth, biofilm formation and virulence of Klebsiella pneumoniae causing liver abscess. BMC Microbiol 20:36. https://doi.org/10.1186/s12866-020-01727-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bachman MA, Oyler JE, Burns SH et al (2011) Klebsiella pneumoniae yersiniabactin promotes respiratory tract infection through evasion of lipocalin 2. Infect Immun 79:3309–3316. https://doi.org/10.1128/IAI.05114-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Russo TA, Olson R, MacDonald U, Beanan J, Davidsona BA (2015) Aerobactin, but not yersiniabactin, salmochelin, or enterobactin, enables the growth/survival of hypervirulent (hypermucoviscous) Klebsiella pneumoniae ex vivo and in vivo. Infect Immun 83:3325–3333. https://doi.org/10.1128/IAI.00430-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Russo TA, Shon AS, Beanan JM et al (2011) Hypervirulent K. pneumoniae secretes more and more active iron-acquisition molecules than “Classical” K. pneumoniae thereby enhancing its virulence spellberg B, ed. PLoS ONE 6:e26734. https://doi.org/10.1371/journal.pone.0026734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Fischbach MA, Lin H, Zhou L et al (2006) The pathogen-associated iroA gene cluster mediates bacterial evasion of lipocalin 2. Proc Natl Acad Sci USA 103:16502–16507. https://doi.org/10.1073/pnas.0604636103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Russo TA, Olson R, MacDonald U et al (2014) Aerobactin mediates virulence and accounts for increased siderophore production under iron-limiting conditions by hypervirulent (Hypermucoviscous) Klebsiella pneumoniae. Infect Immun 82:2356–2367. https://doi.org/10.1128/IAI.01667-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Perry RD, Balbo PB, Jones HA, Fetherston JD, DeMoll E (1999) Yersiniabactin from Yersinia pestis: biochemical characterization of the siderophore and its role in iron transport and regulation. Microbiology 145:1181–1190. https://doi.org/10.1099/13500872-145-5-1181

    Article  CAS  PubMed  Google Scholar 

  95. Yan Q, Zhou M, Zou M, Liu WE (2016) Hypervirulent Klebsiella pneumoniae induced ventilator-associated pneumonia in mechanically ventilated patients in China. Eur J Clin Microbiol Infect Dis 35:387–396. https://doi.org/10.1007/s10096-015-2551-2

    Article  CAS  PubMed  Google Scholar 

  96. Zhu Z, Huang H, Xu Y et al (2021) Emergence and genomics of OXA-232-Producing Klebsiella pneumoniae in a hospital, Yancheng, China. J Glob Antimicrob Resist 26:194–198. https://doi.org/10.1016/j.jgar.2021.05.015

    Article  CAS  PubMed  Google Scholar 

  97. Sellera FP, Lopes R, Monte DFM et al (2020) Genomic analysis of multidrug-resistant CTX-M-15-positive Klebsiella pneumoniae belonging to the highly successful ST15 clone isolated from a dog with chronic otitis. J Glob Antimicrob Resist 22:659–661. https://doi.org/10.1016/j.jgar.2020.06.017

    Article  PubMed  Google Scholar 

  98. Hao Z, Duan J, Liu L et al (2020) Prevalence of community-acquired, Hypervirulent Klebsiella pneumoniae isolates in Wenzhou. China Microb Drug Resist 26:21–27. https://doi.org/10.1089/mdr.2019.0096

    Article  CAS  PubMed  Google Scholar 

  99. Zhao Y, Zhang S, Fang R et al (2020) Dynamic epidemiology and virulence characteristics of carbapenem-resistant Klebsiella pneumoniae in Wenzhou, China from 2003 to 2016. Infect Drug Resist 13:931–940. https://doi.org/10.2147/IDR.S243032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rossi B, Gasperini ML, Leflon-Guibout V et al (2018) Hypervirulent Klebsiella pneumoniae in cryptogenic liver abscesses, Paris. France Emerg Infect Dis 24:221–229. https://doi.org/10.3201/eid2402.170957

    Article  CAS  PubMed  Google Scholar 

  101. Wasfi R, Elkhatib WF, Ashour HM (2016) Molecular typing and virulence analysis of multidrug resistant Klebsiella pneumoniae clinical isolates recovered from Egyptian hospitals. Sci Rep 6:38929. https://doi.org/10.1038/srep38929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hu D, Li Y, Ren P et al (2021) Molecular epidemiology of hypervirulent carbapenemase-producing Klebsiella pneumoniae. Front Cell Infect Microbiol. https://doi.org/10.3389/fcimb.2021.661218

    Article  PubMed  PubMed Central  Google Scholar 

  103. Scavuzzi AML, Firmo EF, de Oliveira ÉM, de Lopes ACS (2019) Emergence of blaNDM-1 associated with the aac(6’)-Ib-cr, acrB, cps, and mrkD genes in a clinical isolate of multi-drug resistant Klebsiella pneumoniae from Recife-PE Brazil. Rev Soc Bras Med Trop. https://doi.org/10.1590/0037-8682-0352-2018

    Article  PubMed  Google Scholar 

  104. Nguyen LP, Pinto NA, Vu TN et al (2020) In vitro activity of a novel siderophore-cephalosporin, GT-1 and serine-Type β-lactamase inhibitor, GT-055, against Escherichia coli, Klebsiella pneumoniae and Acinetobacter spp. Panel Strains Antibiot 9:267. https://doi.org/10.3390/antibiotics9050267

    Article  CAS  Google Scholar 

  105. Sonnevend Á, Ghazawi A, Hashmey R et al (2017) Multihospital occurrence of pan-resistant Klebsiella pneumoniae sequence type 147 with an IS Ecp1-directed bla OXA-181 insertion in the mgrB gene in the United Arab Emirates. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.00418-17

    Article  PubMed  PubMed Central  Google Scholar 

  106. Lin ZW, Zheng JX, Bai B et al (2020) Characteristics of hypervirulent Klebsiella pneumoniae: does low expression of rmpA contribute to the absence of hypervirulence? Front Microbiol. https://doi.org/10.3389/fmicb.2020.00436

    Article  PubMed  PubMed Central  Google Scholar 

  107. Shah RK, Ni ZH, Sun XY, Wang GQ, Li F (2017) The determination and correlation of various virulence genes, ESBL, serum bactericidal effect and biofilm formation of clinical isolated classical Klebsiella pneumoniae and hypervirulent Klebsiella pneumoniae from respiratory tract infected patients. Pol J Microbiol 66:501–508. https://doi.org/10.5604/01.3001.0010.7042

    Article  PubMed  Google Scholar 

  108. Bailey DC, Alexander E, Rice MR et al (2018) Structural and functional delineation of aerobactin biosynthesis in hypervirulent Klebsiella pneumoniae. J Biol Chem 293:7841–7852. https://doi.org/10.1074/jbc.RA118.002798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Khalil MAF, Hager R, Abd-El Reheem F et al (2019) A study of the virulence traits of carbapenem-resistant Klebsiella pneumoniae isolates in a Galleria mellonella model. Microb Drug Resist 25:1063–1071. https://doi.org/10.1089/mdr.2018.0270

    Article  CAS  PubMed  Google Scholar 

  110. Li J, Ren J, Wang W et al (2018) Risk factors and clinical outcomes of hypervirulent Klebsiella pneumoniae induced bloodstream infections. Eur J Clin Microbiol Infect Dis 37:679–689. https://doi.org/10.1007/s10096-017-3160-z

    Article  PubMed  Google Scholar 

  111. Liu Z, Gu Y, Li X et al (2019) Identification and characterization of NDM-1-producing hypervirulent (Hypermucoviscous) Klebsiella pneumoniae in China. Ann Lab Med 39:167–175. https://doi.org/10.3343/alm.2019.39.2.167

    Article  CAS  PubMed  Google Scholar 

  112. Davies YM, Cunha MPV, Oliveira MGX et al (2016) Virulence and antimicrobial resistance of Klebsiella pneumoniae isolated from passerine and psittacine birds. Avian Pathol 45:194–201. https://doi.org/10.1080/03079457.2016.1142066

    Article  CAS  PubMed  Google Scholar 

  113. Ganz T (2018) Iron and infection. Int J Hematol 107:7–15. https://doi.org/10.1007/s12185-017-2366-2

    Article  CAS  PubMed  Google Scholar 

  114. Kim YJ, Il KS, Kim YR et al (2017) Virulence factors and clinical patterns of hypermucoviscous Klebsiella pneumoniae isolated from urine. Infect Dis 49:178–184. https://doi.org/10.1080/23744235.2016.1244611

    Article  CAS  Google Scholar 

  115. Tian D, Wang M, Zhou Y, Hu D, Ou HY, Jiang X (2021) Genetic diversity and evolution of the virulence plasmids encoding aerobactin and salmochelin in Klebsiella pneumoniae. Virulence 12:1323–1333. https://doi.org/10.1080/21505594.2021.1924019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Liu C, Du P, Xiao N, Ji F, Russo TA, Guo J (2020) Hypervirulent klebsiella pneumoniae is emerging as an increasingly prevalent K. pneumoniae pathotype responsible for nosocomial and healthcare-associated infections in Beijing China. Virulence 11:1215–1224. https://doi.org/10.1080/21505594.2020.1809322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Crouch MLV, Castor M, Karlinsey JE, Kalhorn T, Fang FC (2008) Biosynthesis and IroC-dependent export of the siderophore salmochelin are essential for virulence of Salmonella enterica serovar typhimurium. Mol Microbiol 67:971–983. https://doi.org/10.1111/j.1365-2958.2007.06089.x

    Article  CAS  PubMed  Google Scholar 

  118. Hantke K, Nicholson G, Rabsch W, Winkelmann G (2003) Salmochelins, siderophores of Salmonella enterica and uropathogenic Escherichia coli strains, are recognized by the outer membrane receptor IroN. Proc Natl Acad Sci USA 100:3677–3682. https://doi.org/10.1073/pnas.0737682100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhang S, Zhang X, Wu Q et al (2019) Clinical, microbiological, and molecular epidemiological characteristics of Klebsiella pneumoniae-induced pyogenic liver abscess in southeastern China. Antimicrob Resist Infect Control 8:166. https://doi.org/10.1186/s13756-019-0615-2

    Article  PubMed  PubMed Central  Google Scholar 

  120. Caza M, Lépine F, Milot S, Dozois CM (2008) Specific roles of the iroBCDEN genes in virulence of an avian pathogenic Escherichia coli O78 strain and in production of salmochelins. Infect Immun 76:3539–3549. https://doi.org/10.1128/IAI.00455-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bachman MA, Lenio S, Schmidt L, Oyler JE, Weiser JN (2012) Interaction of lipocalin 2 transferrin, and siderophores determines the replicative niche of klebsiella pneumoniae during pneumonia hultgren SJ, ed. MBio. https://doi.org/10.1128/mBio.00224-11

    Article  PubMed  PubMed Central  Google Scholar 

  122. Gao Q, Shen Z, Qin J, Liu Y, Li M (2020) Antimicrobial resistance and pathogenicity determination of community-acquired hypervirulent Klebsiella pneumoniae. Microb Drug Resist 26:1195–1200. https://doi.org/10.1089/mdr.2019.0439

    Article  CAS  PubMed  Google Scholar 

  123. Ma L, Fang C, Lee C, Shun C, Wang J (2005) Genomic heterogeneity in Klebsiella pneumoniae strains is associated with primary pyogenic liver abscess and metastatic infection. J Infect Dis 192:117–128. https://doi.org/10.1086/430619

    Article  CAS  PubMed  Google Scholar 

  124. Imai K, Ishibashi N, Kodana M et al (2019) Clinical characteristics in bloodstream infections caused by Klebsiella pneumoniae, Klebsiella variicola, and Klebsiella quasipneumoniae: a comparative study, Japan, 2014–2017. BMC Infect Dis 19:946. https://doi.org/10.1186/s12879-019-4498-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Aljanaby AAJ, Alhasani AHA (2016) Virulence factors and antibiotic susceptibility patterns of multidrug resistance Klebsiella pneumoniae isolated from different clinical infections. Afr J Microbiol Res 10:829–843. https://doi.org/10.5897/AJMR2016.8051

    Article  CAS  Google Scholar 

  126. Azevedo PAA, Furlan JPR, Gonçalves GB et al (2019) Molecular characterisation of multidrug-resistant Klebsiella pneumoniae belonging to CC258 isolated from outpatients with urinary tract infection in Brazil. J Glob Antimicrob Resist 18:74–79. https://doi.org/10.1016/j.jgar.2019.01.025

    Article  PubMed  Google Scholar 

  127. Chou HC, Lee CZ, Ma LC, Fang CT, Chang SC, Wang JT (2004) Isolation of a chromosomal region of Klebsiella pneumoniae associated with allantoin metabolism and liver infection. Infect Immun 72:3783–3792. https://doi.org/10.1128/IAI.72.7.3783-3792.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Decre D, Verdet C, Emirian A et al (2011) Emerging severe and fatal infections due to Klebsiella pneumoniae in two university hospitals in France. J Clin Microbiol 49:3012–3014. https://doi.org/10.1128/JCM.00676-11

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)—Brasil [grant code 001]. Adriano S. S. Monteiro acknowledges the Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB) for the Ph.D. scholarships.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Adriano de Souza Santos Monteiro did the literature search, data analysis, and drafted it; Soraia Machado Cordeiro had the idea of the article and drafted it; and the work was critically revised by Joice Neves Reis Pedreira.

Corresponding author

Correspondence to Joice Neves Reis.

Ethics declarations

Conflict of interest

The authors declare no conflicts/competing interests.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monteiro, A.d.S.S., Cordeiro, S.M. & Reis, J.N. Virulence Factors in Klebsiella pneumoniae: A Literature Review. Indian J Microbiol (2024). https://doi.org/10.1007/s12088-024-01247-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12088-024-01247-0

Keywords

Navigation