Skip to main content

Advertisement

Log in

In Vitro Oxygen Glucose Deprivation Model of Ischemic Stroke: A Proteomics-Driven Systems Biological Perspective

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Oxygen glucose deprivation (OGD) of brain cells is the commonest in vitro model of ischemic stroke that is used extensively for basic and preclinical stroke research. Protein mass spectrometry is one of the most promising and rapidly evolving technologies in biomedical research. A systems-level understanding of cell-type-specific responses to oxygen and glucose deprivation without systemic influence is a prerequisite to delineate the response of the neurovascular unit following ischemic stroke. In this systematic review, we summarize the proteomics studies done on different OGD models. These studies have followed an expression or interaction proteomics approach. They have been primarily used to understand the cellular pathophysiology of ischemia-reperfusion injury or to assess the efficacy of interventions as potential treatment options. We compile the limitations of OGD model and downstream proteomics experiment. We further show that despite having limitations, several proteins shortlisted as altered in in vitro OGD-proteomics studies showed comparable regulation in ischemic stroke patients. This showcases the translational potential of this approach for therapeutic target and biomarker discovery. We next discuss the approaches that can be adopted for cell-type-specific validation of OGD-proteomics results in the future. Finally, we briefly present the research questions that can be addressed by OGD-proteomics studies using emerging techniques of protein mass spectrometry. We have also created a web resource compiling information from OGD-proteomics studies to facilitate data sharing for community usage. This review intends to encourage preclinical stroke community to adopt a hypothesis-free proteomics approach to understand cell-type-specific responses following ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Supplementary materials are available. A web resource containing supplementary tables and vector graphic version of a modified Fig. 3 are available at https://yenepoya.res.in/database/LTN_Datta_Lab/OGD-Prot_Systematic-Review/

Abbreviations

OGD:

Oxygen glucose deprivation

CSF:

Cerebrospinal fluid

MALDI:

Matrix-assisted laser desorption ionization

2D-GE:

Two-dimensional gel electrophoresis

ICAT:

Isotope-coded affinity tag

iTRAQ:

Isobaric tags for relative and absolute quantitation

TMT:

Tandem mass tags

MPT:

Mitochondrial permeability transition

ROS:

Reactive oxygen species

EV:

Extracellular vesicles

PMI:

Post mortem interval

LCM:

Laser-capture microdissection

PRM:

Parallel reaction monitoring

SRM:

Single reaction monitoring

MRM:

Multiple reaction monitoring

References

  1. Goldberg MP, Choi DW (1993) Combined oxygen and glucose deprivation in cortical cell culture: calcium- dependent and calcium-independent mechanisms of neuronal injury. J Neurosci 13(8):3510–3524. https://doi.org/10.1523/jneurosci.13-08-03510.1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Trotman-Lucas M, Gibson CL (2021) A review of experimental models of focal cerebral ischemia focusing on the middle cerebral artery occlusion model. F1000Res 10:242. https://doi.org/10.12688/f1000research.51752.2

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246(4926):64–71. https://doi.org/10.1126/science.2675315

    Article  CAS  PubMed  Google Scholar 

  4. Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T, Matsuo T (1988) Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2(8):151–153. https://doi.org/10.1002/rcm.1290020802

    Article  CAS  Google Scholar 

  5. Ideker T, Galitski T, Hood L (2001) A new approach to decoding life: systems biology. Annu Rev Genomics Hum Genet 2:343–372. https://doi.org/10.1146/annurev.genom.2.1.343

    Article  CAS  PubMed  Google Scholar 

  6. O’Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, Howells DW (2006) 1,026 experimental treatments in acute stroke. Ann Neurol 59(3):467–477. https://doi.org/10.1002/ana.20741

    Article  CAS  PubMed  Google Scholar 

  7. Lapchak PA (2010) A critical assessment of edaravone acute ischemic stroke efficacy trials: is edaravone an effective neuroprotective therapy? Expert Opin Pharmacother 11(10):1753–1763. https://doi.org/10.1517/14656566.2010.493558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen HS, Qi SH, Shen JG (2017) One-compound-multi-target: combination prospect of natural compounds with thrombolytic therapy in acute ischemic stroke. Curr Neuropharmacol 15(1):134–156. https://doi.org/10.2174/1570159x14666160620102055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tonomura S, Ihara M, Friedland RP (2020) Microbiota in cerebrovascular disease: a key player and future therapeutic target. J Cereb Blood Flow Metab 40(7):1368–1380. https://doi.org/10.1177/0271678x20918031

    Article  PubMed  PubMed Central  Google Scholar 

  10. Iadecola C, Anrather J (2011) Stroke research at a crossroad: asking the brain for directions. Nat Neurosci 14(11):1363–1368. https://doi.org/10.1038/nn.2953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li H, You W, Li X, Shen H, Chen G (2019) Proteomic-based approaches for the study of ischemic stroke. Transl Stroke Res 10(6):601–606. https://doi.org/10.1007/s12975-019-00716-9

    Article  CAS  PubMed  Google Scholar 

  12. Datta A, Jingru Q, Khor TH, Teo MT, Heese K, Sze SK (2011) Quantitative neuroproteomics of an in vivo rodent model of focal cerebral ischemia/reperfusion injury reveals a temporal regulation of novel pathophysiological molecular markers. J Prot Res 10(11):5199–5213. https://doi.org/10.1021/pr200673y

    Article  CAS  Google Scholar 

  13. Mergenthaler P, Lindauer U, Dienel GA, Meisel A (2013) Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci 36(10):587–597. https://doi.org/10.1016/j.tins.2013.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu J, Chen M, Dong R, Sun C, Li S, Zhu S (2019) Ghrelin promotes cortical neurites growth in late stage after oxygen-glucose deprivation/reperfusion injury. J Mol Neurosci 68(1):29–37. https://doi.org/10.1007/s12031-019-01279-y

    Article  CAS  PubMed  Google Scholar 

  15. DeGregorio-Rocasolano N, Guirao V, Ponce J, Melià-Sorolla M, Aliena-Valero A, García-Serran A, Salom JB, Dávalos A et al (2020) Comparative proteomics unveils LRRFIP1 as a new player in the DAPK1 interactome of neurons exposed to oxygen and glucose deprivation. Antioxidants (Basel, Switzerland) 9(12):1202. https://doi.org/10.3390/antiox9121202

  16. Kim JY, Kim N, Zheng Z, Lee JE, Yenari MA (2016) 70-kDa Heat shock protein downregulates dynamin in experimental stroke: a new therapeutic target? Stroke 47(8):2103–2111. https://doi.org/10.1161/strokeaha.116.012763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang W, Thompson JW, Wang Z, Wang L, Sheng H, Foster MW, Moseley MA, Paschen W (2012) Analysis of oxygen/glucose-deprivation-induced changes in SUMO3 conjugation using SILAC-based quantitative proteomics. J Proteome Res 11(2):1108–1117. https://doi.org/10.1021/pr200834f

    Article  CAS  PubMed  Google Scholar 

  18. Datta A, Park JE, Li X, Zhang H, Ho ZS, Heese K, Lim SK, Tam JP et al (2010) Phenotyping of an in vitro model of ischemic penumbra by iTRAQ-based shotgun quantitative proteomics. J Proteome Res 9(1):472–484. https://doi.org/10.1021/pr900829h

    Article  CAS  PubMed  Google Scholar 

  19. Jeong SY, Jeon R, Choi YK, Jung JE, Liang A, Xing C, Wang X, Lo EH et al (2016) Activation of microglial Toll-like receptor 3 promotes neuronal survival against cerebral ischemia. J Neurochem 136(4):851–858. https://doi.org/10.1111/jnc.13441

    Article  CAS  PubMed  Google Scholar 

  20. Zhang B, Yang N, Mo ZM, Lin SP, Zhang F (2017) IL-17A Enhances microglial response to OGD by regulating p53 and PI3K/Akt pathways with involvement of ROS/HMGB1. Front Mol Neurosci 10:271. https://doi.org/10.3389/fnmol.2017.00271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Snyder CM, Chandel NS (2009) Mitochondrial regulation of cell survival and death during low-oxygen conditions. Antioxid Redox Signal 11(11):2673–2683. https://doi.org/10.1089/ars.2009.2730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Holloway PM, Gavins FN (2016) Modeling ischemic stroke in vitro: status quo and future perspectives. Stroke 47(2):561–569. https://doi.org/10.1161/strokeaha.115.011932

    Article  PubMed  PubMed Central  Google Scholar 

  23. Li H, Kittur FS, Hung C-Y, Li PA, Ge X, Sane DC, Xie J (2020) Quantitative proteomics reveals the beneficial effects of low glucose on neuronal cell survival in an in vitro ischemic penumbral model. Front Cell Neurosci 14:272. https://doi.org/10.3389/fncel.2020.00272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zheng X, Zhang L, Kuang Y, Venkataramani V, Jin F, Hein K, Zafeiriou MP, Lenz C et al (2021) Extracellular vesicles derived from neural progenitor cells–a preclinical evaluation for stroke treatment in mice. Transl Stroke Res 12:185–203. https://doi.org/10.1007/s12975-020-00814-z

    Article  CAS  PubMed  Google Scholar 

  25. Zhao J, Piao X, Wu Y, Liang S, Han F, Liang Q, Shao S, Zhao D (2020) Cepharanthine attenuates cerebral ischemia/reperfusion injury by reducing NLRP3 inflammasome-induced inflammation and oxidative stress via inhibiting 12/15-LOX signaling. Biomed Pharmacother 127:110151. https://doi.org/10.1016/j.biopha.2020.110151

    Article  CAS  PubMed  Google Scholar 

  26. Xu F-F, Zhang Z-B, Wang Y-Y, Wang T-H (2018) Brain-derived glia maturation factor β participates in lung injury induced by acute cerebral ischemia by increasing ROS in endothelial cells. Neurosci Bull 34:1077–1090. https://doi.org/10.1007/s12264-018-0283-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tao RR, Wang H, Hong LJ, Huang JY, Lu YM, Liao MH, Ye WF, Lu NN et al (2014) Nitrosative stress induces peroxiredoxin 1 ubiquitination during ischemic insult via E6AP activation in endothelial cells both in vitro and in vivo. Antioxid Redox Signal 21(1):1–16. https://doi.org/10.1089/ars.2013.5381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Haqqani AS, Kelly J, Baumann E, Haseloff RF, Blasig IE, Stanimirovic DB (2007) Protein markers of ischemic insult in brain endothelial cells identified using 2D gel electrophoresis and ICAT-based quantitative proteomics. J Proteome Res 6(1):226–239. https://doi.org/10.1021/pr0603811

    Article  CAS  PubMed  Google Scholar 

  29. Comajoan P, Gubern C, Huguet G, Serena J, Kádár E, Castellanos M (2018) Evaluation of common housekeeping proteins under ischemic conditions and/or rt-PA treatment in bEnd. 3 cells. J Proteomics 184:10–15. https://doi.org/10.1016/j.jprot.2018.06.011

    Article  CAS  PubMed  Google Scholar 

  30. Mallick P, Kuster B (2010) Proteomics: a pragmatic perspective. Nat Biotechnol 28(7):695–709. https://doi.org/10.1038/nbt.1658

    Article  CAS  PubMed  Google Scholar 

  31. Herrmann AG, Deighton RF, Le Bihan T, McCulloch MC, Searcy JL, Kerr LE, McCulloch J (2013) Adaptive changes in the neuronal proteome: mitochondrial energy production, endoplasmic reticulum stress, and ribosomal dysfunction in the cellular response to metabolic stress. J Cereb Blood Flow Metab 33:673–683. https://doi.org/10.1038/jcbfm.2012.204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang X, Wang J, Shi X, Pan C, Liu H, Dong Y, Dong R, Mang J et al (2019) Proteomic analyses identify a potential mechanism by which extracellular vesicles aggravate ischemic stroke. Life Sci 231:116527. https://doi.org/10.1016/j.lfs.2019.06.002

    Article  CAS  PubMed  Google Scholar 

  33. Llombart V, García-Berrocoso T, Bech-Serra JJ, Simats A, Bustamante A, Giralt D, Reverter-Branchat G, Canals F et al (2016) Characterization of secretomes from a human blood brain barrier endothelial cells in-vitro model after ischemia by stable isotope labeling with aminoacids in cell culture (SILAC). J Proteomics 133:100–112. https://doi.org/10.1016/j.jprot.2015.12.011

    Article  CAS  PubMed  Google Scholar 

  34. Yan H, Zhou W, Wei L, Zhong F, Yang Y (2010) Proteomic analysis of astrocytic secretion that regulates neurogenesis using quantitative amine-specific isobaric tagging. Biochem Biophys Res Commun 391(2):1187–1191. https://doi.org/10.1016/j.bbrc.2009.12.015

    Article  CAS  PubMed  Google Scholar 

  35. Vidova V, Spacil Z (2017) A review on mass spectrometry-based quantitative proteomics: Targeted and data independent acquisition. Anal Chim Acta 964:7–23. https://doi.org/10.1016/j.aca.2017.01.059

    Article  CAS  PubMed  Google Scholar 

  36. Jochner MCE, An J, Lättig-Tünnemann G, Kirchner M, Dagane A, Dittmar G, Dirnagl U, Eickholt BJ et al (2019) Unique properties of PTEN-L contribute to neuroprotection in response to ischemic-like stress. Sci Rep 9(1):3183. https://doi.org/10.1038/s41598-019-39438-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Imai T, Matsubara H, Nakamura S, Hara H, Shimazawa M (2020) The mitochondria-targeted peptide, bendavia, attenuated ischemia/reperfusion-induced stroke damage. Neuroscience 443:110–119. https://doi.org/10.1016/j.neuroscience.2020.07.044

    Article  CAS  PubMed  Google Scholar 

  38. Ast T, Mootha VK (2019) Oxygen and mammalian cell culture: are we repeating the experiment of Dr. Ox? Nat Metab 1(9):858–860. https://doi.org/10.1038/s42255-019-0105-0

    Article  CAS  PubMed  Google Scholar 

  39. Keeley TP, Mann GE (2019) Defining physiological normoxia for improved translation of cell physiology to animal models and humans. Physiol Rev 99(1):161–234. https://doi.org/10.1152/physrev.00041.2017

    Article  CAS  PubMed  Google Scholar 

  40. Schroedl C, McClintock DS, Budinger GR, Chandel NS (2002) Hypoxic but not anoxic stabilization of HIF-1alpha requires mitochondrial reactive oxygen species. Am J Physiol Lung Cell Mol Physiol 283(5):L922-931. https://doi.org/10.1152/ajplung.00014.2002

    Article  CAS  PubMed  Google Scholar 

  41. Liu L, Wise DR, Diehl JA, Simon MC (2008) Hypoxic reactive oxygen species regulate the integrated stress response and cell survival. J Biol Chem 283(45):31153–31162. https://doi.org/10.1074/jbc.M805056200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wenger RH, Kurtcuoglu V, Scholz CC, Marti HH, Hoogewijs D (2015) Frequently asked questions in hypoxia research. Hypoxia (Auckl) 3:35–43. https://doi.org/10.2147/hp.S92198

    Article  Google Scholar 

  43. Kleman AM, Yuan JY, Aja S, Ronnett GV, Landree LE (2008) Physiological glucose is critical for optimized neuronal viability and AMPK responsiveness in vitro. J Neurosci Methods 167(2):292–301. https://doi.org/10.1016/j.jneumeth.2007.08.028

    Article  CAS  PubMed  Google Scholar 

  44. Datta A, Akatsu H, Heese K, Sze SK (2013) Quantitative clinical proteomic study of autopsied human infarcted brain specimens to elucidate the deregulated pathways in ischemic stroke pathology. J Proteomics 91:556–568. https://doi.org/10.1016/j.jprot.2013.08.017

    Article  CAS  PubMed  Google Scholar 

  45. Datta A, Chen CP, Sze SK (2014) Discovery of prognostic biomarker candidates of lacunar infarction by quantitative proteomics of microvesicles enriched plasma. PLoS ONE 9(4):e94663. https://doi.org/10.1371/journal.pone.0094663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cuadrado E, Rosell A, Colomé N, Hernández-Guillamon M, García-Berrocoso T, Ribo M, Alcazar A, Ortega-Aznar A et al (2010) The proteome of human brain after ischemic stroke. J Neuropathol Exp Neurol 69(11):1105–1115. https://doi.org/10.1097/NEN.0b013e3181f8c539

    Article  CAS  PubMed  Google Scholar 

  47. García-Berrocoso T, Llombart V, Colàs-Campàs L, Hainard A, Licker V, Penalba A, Ramiro L, Simats A et al (2018) Single cell immuno-laser microdissection coupled to label-free proteomics to reveal the proteotypes of human brain cells after ischemia. Mol Cell Proteomics 17(1):175–189. https://doi.org/10.1074/mcp.RA117.000419

    Article  PubMed  Google Scholar 

  48. García-Berrocoso T, Penalba A, Boada C, Giralt D, Cuadrado E, Colomé N, Dayon L, Canals F et al (2013) From brain to blood: new biomarkers for ischemic stroke prognosis. J Proteomics 94:138–148. https://doi.org/10.1016/j.jprot.2013.09.005

    Article  CAS  PubMed  Google Scholar 

  49. Allard L, Lescuyer P, Burgess J, Leung KY, Ward M, Walter N, Burkhard PR, Corthals G et al (2004) ApoC-I and ApoC-III as potential plasmatic markers to distinguish between ischemic and hemorrhagic stroke. Proteomics 4(8):2242–2251. https://doi.org/10.1002/pmic.200300809

    Article  CAS  PubMed  Google Scholar 

  50. Sharma R, Gowda H, Chavan S, Advani J, Kelkar D, Kumar GS, Bhattacharjee M, Chaerkady R et al (2015) Proteomic signature of endothelial dysfunction identified in the serum of acute ischemic stroke patients by the iTRAQ-based LC-MS approach. J Proteome Res 14(6):2466–2479. https://doi.org/10.1021/pr501324n

    Article  CAS  PubMed  Google Scholar 

  51. Song H, Zhou H, Qu Z, Hou J, Chen W, Cai W, Cheng Q, Chuang DY et al (2019) From Analysis of ischemic mouse brain proteome to identification of human serum clusterin as a potential biomarker for severity of acute ischemic stroke. Transl Stroke Res 10(5):546–556. https://doi.org/10.1007/s12975-018-0675-2

    Article  CAS  PubMed  Google Scholar 

  52. Lescuyer P, Allard L, Zimmermann-Ivol CG, Burgess JA, Hughes-Frutiger S, Burkhard PR, Sanchez JC, Hochstrasser DF (2004) Identification of post-mortem cerebrospinal fluid proteins as potential biomarkers of ischemia and neurodegeneration. Proteomics 4(8):2234–2241. https://doi.org/10.1002/pmic.200300822

    Article  CAS  PubMed  Google Scholar 

  53. Dayon L, Turck N, Garcí-Berrocoso T, Walter N, Burkhard PR, Vilalta A, Sahuquillo J, Montaner J et al (2011) Brain extracellular fluid protein changes in acute stroke patients. J Proteome Res 10(3):1043–1051. https://doi.org/10.1021/pr101123t

    Article  CAS  PubMed  Google Scholar 

  54. Alvarez-Castelao B, Schanzenbächer CT, Hanus C, Glock C, Tom Dieck S, Dörrbaum AR, Bartnik I, Nassim-Assir B et al (2017) Cell-type-specific metabolic labeling of nascent proteomes in vivo. Nat Biotechnol 35(12):1196–1201. https://doi.org/10.1038/nbt.4016

    Article  CAS  PubMed  Google Scholar 

  55. Uezu A, Kanak DJ, Bradshaw TW, Soderblom EJ, Catavero CM, Burette AC, Weinberg RJ, Soderling SH (2016) Identification of an elaborate complex mediating postsynaptic inhibition. Science 353(6304):1123–1129. https://doi.org/10.1126/science.aag0821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wilson RS, Nairn AC (2018) Cell-type-specific proteomics: a neuroscience perspective. Proteomes 6(4):51. https://doi.org/10.3390/proteomes6040051

  57. Tsai AS, Berry K, Beneyto MM, Gaudilliere D, Ganio EA, Culos A, Ghaemi MS, Choisy B et al (2019) A year-long immune profile of the systemic response in acute stroke survivors. Brain 142(4):978–991. https://doi.org/10.1093/brain/awz022

    Article  PubMed  PubMed Central  Google Scholar 

  58. Li Y, Wang Y, Yao Y, Griffiths BB, Feng L, Tao T, Wang F, Xu B et al (2020) Systematic study of the immune components after ischemic stroke using CyTOF techniques. J Immunol Res 2020:9132410. https://doi.org/10.1155/2020/9132410

  59. Aebersold R, Burlingame AL, Bradshaw RA (2013) Western blots versus selected reaction monitoring assays: time to turn the tables? Mol Cell Proteomics 12(9):2381–2382. https://doi.org/10.1074/mcp.E113.031658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dirnagl U, Macleod MR (2009) Stroke research at a road block: the streets from adversity should be paved with meta-analysis and good laboratory practice. Br J Pharmacol 157(7):1154–1156. https://doi.org/10.1111/j.1476-5381.2009.00211.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dirnagl U, Endres M (2014) Found in translation: Preclinical stroke research predicts human pathophysiology, clinical phenotypes, and therapeutic outcomes. Stroke 45(5):1510–1518. https://doi.org/10.1161/STROKEAHA.113.004075

    Article  PubMed  Google Scholar 

  62. von Bartheld CS, Bahney J, Herculano-Houzel S (2016) The search for true numbers of neurons and glial cells in the human brain: a review of 150 years of cell counting. J Comp Neurol 524(18):3865–3895. https://doi.org/10.1002/cne.24040

    Article  Google Scholar 

  63. Budnik B, Levy E, Harmange G, Slavov N (2018) SCoPE-MS: mass spectrometry of single mammalian cells quantifies proteome heterogeneity during cell differentiation. Genome Biol 19(1):161. https://doi.org/10.1186/s13059-018-1547-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Goto-Silva L (1869) Junqueira M (2021) Single-cell proteomics: a treasure trove in neurobiology. Biochim Biophys Acta Proteins Proteom 7:140658. https://doi.org/10.1016/j.bbapap.2021.140658

    Article  CAS  Google Scholar 

  65. Hsiao CC, Sankowski R, Prinz M, Smolders J, Huitinga I, Hamann J (2021) GPCRomics of Homeostatic and disease-associated human microglia. Front Immunol 12:674189. https://doi.org/10.3389/fimmu.2021.674189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Vitrinel B, Koh HWL, Mujgan Kar F, Maity S, Rendleman J, Choi H, Vogel C (2019) Exploiting interdata relationships in next-generation proteomics analysis. Mol Cell Proteomics 18(8 suppl 1):S5-S14. https://doi.org/10.1074/mcp.MR118.001246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Montaner J, Ramiro L, Simats A, Tiedt S, Makris K, Jickling GC, Debette S, Sanchez JC et al (2020) Multilevel omics for the discovery of biomarkers and therapeutic targets for stroke. Nat Rev Neurol 16(5):247–264. https://doi.org/10.1038/s41582-020-0350-6

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Sudheer Shenoy, Bipasha Bose, and Rekha PD for helpful discussions and Klaus Heese for critical reading of the manuscript.

Funding

The study is funded in part by departmental funding at Yenepoya Research Center and an institutional seed grant (YU/Seed Grant/092–2020 to A.D.) at Yenepoya (Deemed to be University). M.B. is funded by a senior research fellowship from Yenepoya (Deemed to be University).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: A.D. Literature search and analysis: M.B., N.K., and A.D. Preparation of tables, figures, web resource: M.B., N.K. and A.D. Writing and editing: A.D. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Arnab Datta.

Ethics declarations

Ethics Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to Participate

Not applicable

Consent for Publication

Not applicable

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Common abbreviations such as DMEM, MEM, HBSS, BSS, FBS, MAPK, MTT, LDH, RT-PCR, ELISA, siRNA, miRNA, and CRISPR-Cas9 are not included. In vitro OGD-proteomics studies have been done on cells of human and non-human origin. To designate proteins irrespective of the origin, non-italicized gene symbols in uppercase (corresponds to human origin) are used.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 48 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babu, M., Singh, N. & Datta, A. In Vitro Oxygen Glucose Deprivation Model of Ischemic Stroke: A Proteomics-Driven Systems Biological Perspective. Mol Neurobiol 59, 2363–2377 (2022). https://doi.org/10.1007/s12035-022-02745-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02745-2

Keywords

Navigation