Skip to main content
Log in

Desferrioxamine Ameliorates Lipopolysaccharide-Induced Lipocalin-2 Upregulation via Autophagy Activation in Primary Astrocytes

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Lipocalin-2 (LCN2) is an important regulator of both neuroinflammation and iron homeostasis. Upregulated LCN2 was observed in reactive astrocytes in the Parkinson’s disease (PD) models. In the present study, we reported iron chelator deferoxamine (DFO) abolished lipopolysaccharide (LPS)-induced LCN2 upregulation in primary astrocytes, although iron overload had no effects. The suppressive effects of DFO were consistent with autophagy inducer rapamycin or carfilzomib, blocked by autophagy inhibitor 3-methyladenine rather than chloroquine or bafilomycin A1, meanwhile, while were not dependent on proteasome system and NF-κB pathway. DFO was not able to ameliorate LCN2 upregulation in α-synuclein-treated astrocytes, because DFO failed to induce autophagy in these cells. We further demonstrated that DFO could not enhance autophagy lysosomal degradation, however promoted secretory autophagy in primary astrocytes with LPS insults. These data suggest that DFO could serve as an autophagy activator, capable of ameliorating the upregulation of LCN2 in astrocytes by acting on the formation of autophagosomes and secretory autophagy. This provides better understandings of DFO-mediated neuroprotection against neuroinflammation and provides new insights that autophagy activation could be beneficial approaches in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data in our study are available upon request.

References

  1. Jankovic J, Tan EK (2020) Parkinson’s disease: etiopathogenesis and treatment. J Neurol Neurosurg Psychiatry 91(8):795–808

    Article  PubMed  Google Scholar 

  2. Bloem BR, Okun MS, Klein C (2021) Parkinson’s disease. Lancet 397(10291):2284–2303

    Article  CAS  PubMed  Google Scholar 

  3. Verstraeten A, Theuns J, Van Broeckhoven C (2015) Progress in unraveling the genetic etiology of Parkinson disease in a genomic era. Trends Genet 31(3):140–149

    Article  CAS  PubMed  Google Scholar 

  4. Bellou V et al (2016) Environmental risk factors and Parkinson’s disease: an umbrella review of meta-analyses. Parkinsonism Relat Disord 23:1–9

    Article  PubMed  Google Scholar 

  5. Trist BG, Hare DJ, Double KL (2019) Oxidative stress in the aging substantia nigra and the etiology of Parkinson’s disease. Aging Cell 18(6):e13031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gelders G, Baekelandt V, Van der Perren A (2018) Linking neuroinflammation and neurodegeneration in Parkinson’s disease. J Immunol Res 2018:4784268

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jiang P, Dickson DW (2018) Parkinson’s disease: experimental models and reality. Acta Neuropathol 135(1):13–32

    Article  CAS  PubMed  Google Scholar 

  8. Yun SP et al (2018) Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease. Nat Med 24(7):931–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Joshi AU et al (2019) Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration. Nat Neurosci 22(10):1635–1648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fellner L et al (2013) Toll-like receptor 4 is required for α-synuclein dependent activation of microglia and astroglia. Glia 61(3):349–360

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rannikko EH, Weber SS, Kahle PJ (2015) Exogenous α-synuclein induces toll-like receptor 4 dependent inflammatory responses in astrocytes. BMC Neurosci 16:57

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kim C et al (2018) Immunotherapy targeting toll-like receptor 2 alleviates neurodegeneration in models of synucleinopathy by modulating α-synuclein transmission and neuroinflammation. Mol Neurodegener 13(1):43

    Article  PubMed  PubMed Central  Google Scholar 

  13. Xiao X, Yeoh BS, Vijay-Kumar M (2017) Lipocalin 2: an emerging player in iron homeostasis and inflammation. Annu Rev Nutr 37:103–130

    Article  CAS  PubMed  Google Scholar 

  14. Xing C et al (2014) Neuronal production of lipocalin-2 as a help-me signal for glial activation. Stroke 45(7):2085–2092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Al Nimer F et al (2016) Lipocalin-2 is increased in progressive multiple sclerosis and inhibits remyelination. Neurol Neuroimmunol Neuroinflamm 3(1):e191

    Article  PubMed  PubMed Central  Google Scholar 

  16. Llorens F et al (2020) Cerebrospinal fluid lipocalin 2 as a novel biomarker for the differential diagnosis of vascular dementia. Nat Commun 11(1):619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Choi J, Lee HW, Suk K (2011) Increased plasma levels of lipocalin 2 in mild cognitive impairment. J Neurol Sci 305(1–2):28–33

    Article  CAS  PubMed  Google Scholar 

  18. Kang SS et al (2018) Lipocalin-2 protects the brain during inflammatory conditions. Mol Psychiatry 23(2):344–350

    Article  CAS  PubMed  Google Scholar 

  19. Jin M, Jang E, Suk K (2014) Lipocalin-2 acts as a neuroinflammatogen in lipopolysaccharide-injected mice. Exp Neurobiol 23(2):155–162

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kim BW et al (2016) Pathogenic upregulation of glial lipocalin-2 in the Parkinsonian dopaminergic system. J Neurosci 36(20):5608–5622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zucca FA et al (2017) Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson’s disease. Prog Neurobiol 155:96–119

    Article  CAS  PubMed  Google Scholar 

  22. Du G et al (2016) Quantitative susceptibility mapping of the midbrain in Parkinson’s disease. Mov Disord 31(3):317–324

    Article  PubMed  Google Scholar 

  23. Sun J et al (2020) Quantitative evaluation of iron content in idiopathic rapid eye movement sleep behavior disorder. Mov Disord 35(3):478–485

    Article  CAS  PubMed  Google Scholar 

  24. Tambasco N et al (2019) T2*-weighted MRI values correlate with motor and cognitive dysfunction in Parkinson’s disease. Neurobiol Aging 80:91–98

    Article  PubMed  Google Scholar 

  25. Martin-Bastida A et al (2021) Iron and inflammation: in vivo and post-mortem studies in Parkinson’s disease. J Neural Transm (Vienna) 128(1):15–25

    Article  CAS  Google Scholar 

  26. Liu C et al (2018) S-Nitrosylation of divalent metal transporter 1 enhances iron uptake to mediate loss of dopaminergic neurons and motoric deficit. J Neurosci 38(39):8364–8377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Urrutia P et al (2013) Inflammation alters the expression of DMT1, FPN1 and hepcidin, and it causes iron accumulation in central nervous system cells. J Neurochem 126(4):541–549

    Article  CAS  PubMed  Google Scholar 

  28. Wang J et al (2013) Pro-inflammatory cytokines modulate iron regulatory protein 1 expression and iron transportation through reactive oxygen/nitrogen species production in ventral mesencephalic neurons. Biochim Biophys Acta 1832(5):618–625

    Article  CAS  PubMed  Google Scholar 

  29. Bousset L et al (2013) Structural and functional characterization of two alpha-synuclein strains. Nat Commun 4:2575

    Article  PubMed  Google Scholar 

  30. Abdelmotilib H et al (2017) α-Synuclein fibril-induced inclusion spread in rats and mice correlates with dopaminergic Neurodegeneration. Neurobiol Dis 105:84–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cui J et al (2020) Hepcidin-to-ferritin ratio is decreased in astrocytes with extracellular alpha-synuclein and iron exposure. Front Cell Neurosci 14:47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Freundt EC, Czapiga M, Lenardo MJ (2007) Photoconversion of Lysotracker Red to a green fluorescent molecule. Cell Res 17(11):956–958

    Article  CAS  PubMed  Google Scholar 

  33. Ma Y et al (2011) MG132 treatment attenuates cardiac remodeling and dysfunction following aortic banding in rats via the NF-κB/TGFβ1 pathway. Biochem Pharmacol 81(10):1228–1236

    Article  CAS  PubMed  Google Scholar 

  34. Zhang XM et al (2020) MG-132 attenuates cardiac deterioration of viral myocarditis via AMPK pathway. Biomed Pharmacother 126:110091

    Article  CAS  PubMed  Google Scholar 

  35. De Domenico I, Ward DM, Kaplan J (2009) Specific iron chelators determine the route of ferritin degradation. Blood 114(20):4546–4551

    Article  PubMed  PubMed Central  Google Scholar 

  36. Altmann C et al (2016) Progranulin overexpression in sensory neurons attenuates neuropathic pain in mice: Role of autophagy. Neurobiol Dis 96:294–311

    Article  CAS  PubMed  Google Scholar 

  37. Guan J et al (2015) Lysosomal dysfunction and impaired autophagy underlie the pathogenesis of amyloidogenic light chain-mediated cardiotoxicity. EMBO Mol Med 7(5):688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kimura S, Noda T, Yoshimori T (2007) Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 3(5):452–460

    Article  CAS  PubMed  Google Scholar 

  39. Nickel W, Rabouille C (2018) Unconventional protein secretion: diversity and consensus. Semin Cell Dev Biol 83:1–2

    Article  PubMed  Google Scholar 

  40. Dupont N et al (2011) Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1β. Embo J 30(23):4701–4711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee HJ et al (2010) Direct transfer of alpha-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J Biol Chem 285(12):9262–9272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. McAlpine CS et al (2021) Astrocytic interleukin-3 programs microglia and limits Alzheimer’s disease. Nature 595(7869):701–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Przedborski S (2017) The two-century journey of Parkinson disease research. Nat Rev Neurosci 18(4):251–259

    Article  CAS  PubMed  Google Scholar 

  44. Sorrentino ZA, Giasson BI, Chakrabarty P (2019) α-Synuclein and astrocytes: tracing the pathways from homeostasis to neurodegeneration in Lewy body disease. Acta Neuropathol 138(1):1–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chavarría C et al (2018) Impact of monomeric, oligomeric and fibrillar alpha-synuclein on astrocyte reactivity and toxicity to neurons. Biochem J 475(19):3153–3169

    Article  PubMed  Google Scholar 

  46. Moreau C et al (2018) Iron as a therapeutic target for Parkinson’s disease. Mov Disord 33(4):568–574

    Article  PubMed  Google Scholar 

  47. Song N, Xie J (2018) Iron, dopamine, and α-synuclein interactions in at-risk dopaminergic neurons in Parkinson’s disease. Neurosci Bull 34(2):382–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cerri S, Mus L, Blandini F (2019) Parkinson’s Disease in Women and Men: What’s the Difference? J Parkinsons Dis 9(3):501–515

    Article  PubMed  PubMed Central  Google Scholar 

  49. Xu M et al (2019) Differential regulation of estrogen in iron metabolism in astrocytes and neurons. J Cell Physiol 234(4):4232–4242

    Article  CAS  PubMed  Google Scholar 

  50. Owen JE, Bishop GM, Robinson SR (2016) Uptake and toxicity of hemin and iron in cultured mouse astrocytes. Neurochem Res 41(1–2):298–306

    Article  CAS  PubMed  Google Scholar 

  51. Ip JP et al (2011) Lipocalin 2 in the central nervous system host response to systemic lipopolysaccharide administration. J Neuroinflammation 8:124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ni W et al (2015) Role of lipocalin-2 in brain injury after intracerebral hemorrhage. J Cereb Blood Flow Metab 35(9):1454–1461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Devireddy LR et al (2005) A cell-surface receptor for lipocalin 24p3 selectively mediates apoptosis and iron uptake. Cell 123(7):1293–1305

    Article  CAS  PubMed  Google Scholar 

  54. Dekens DW et al (2021) Lipocalin 2 as a link between ageing, risk factor conditions and age-related brain diseases. Ageing Res Rev 70:101414

    Article  CAS  PubMed  Google Scholar 

  55. Suk K (2016) Lipocalin-2 as a therapeutic target for brain injury: an astrocentric perspective. Prog Neurobiol 144:158–172

    Article  CAS  PubMed  Google Scholar 

  56. Listwak SJ, Rathore P, Herkenham M (2013) Minimal NF-κB activity in neurons. Neuroscience 250:282–299

    Article  CAS  PubMed  Google Scholar 

  57. Parmar T et al (2018) Lipocalin 2 plays an important role in regulating inflammation in retinal degeneration. J Immunol 200(9):3128–3141

    Article  CAS  PubMed  Google Scholar 

  58. Zhao W, Bendickson L, Nilsen-Hamilton M (2020) The lipocalin2 gene is regulated in mammary epithelial cells by NFκB and C/EBP in response to mycoplasma. Sci Rep 10(1):7641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dimopoulos M et al (2020) Carfilzomib, dexamethasone, and daratumumab versus carfilzomib and dexamethasone for patients with relapsed or refractory multiple myeloma (CANDOR): results from a randomised, multicentre, open-label, phase 3 study. Lancet 396(10245):186–197

    Article  CAS  PubMed  Google Scholar 

  60. Mishima Y et al (2015) Ricolinostat (ACY-1215) induced inhibition of aggresome formation accelerates carfilzomib-induced multiple myeloma cell death. Br J Haematol 169(3):423–434

    Article  CAS  PubMed  Google Scholar 

  61. Jarauta V et al (2016) Inhibition of autophagy with chloroquine potentiates carfilzomib-induced apoptosis in myeloma cells in vitro and in vivo. Cancer Lett 382(1):1–10

    Article  CAS  PubMed  Google Scholar 

  62. Kim KH, Lee MS (2014) Autophagy–a key player in cellular and body metabolism. Nat Rev Endocrinol 10(6):322–337

    Article  CAS  PubMed  Google Scholar 

  63. Chen LL et al (2019) Iron dysregulation in Parkinson’s disease: focused on the autophagy-lysosome pathway. ACS Chem Neurosci 10(2):863–871

    Article  CAS  PubMed  Google Scholar 

  64. Song L, Zhang L (2020) Tau accumulation and defective autophagy: a common pathological mechanism underlying repeat-expansion-induced neurodegenerative diseases? Neurosci Bull 36(12):1411–1413

    Article  PubMed  PubMed Central  Google Scholar 

  65. Moon JH, Jeong JK, Park SY (2015) Deferoxamine inhibits TRAIL-mediated apoptosis via regulation of autophagy in human colon cancer cells. Oncol Rep 33(3):1171–1176

    Article  CAS  PubMed  Google Scholar 

  66. Rakshit J et al (2020) Iron chelator Deferoxamine protects human neuroblastoma cell line SH-SY5Y from 6-Hydroxydopamine-induced apoptosis and autophagy dysfunction. J Trace Elem Med Biol 57:126406

    Article  CAS  PubMed  Google Scholar 

  67. Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140(3):313–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Klionsky DJ et al (2021) Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)(1). Autophagy 17(1):1–382

    Article  PubMed  PubMed Central  Google Scholar 

  69. Yang C et al (2017) Curcumin induces apoptosis and protective autophagy in castration-resistant prostate cancer cells through iron chelation. Drug Des Devel Ther 11:431–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rainey NE et al (2019) Iron chelation by curcumin suppresses both curcumin-induced autophagy and cell death together with iron overload neoplastic transformation. Cell Death Discov 5:150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tury S et al (2018) The iron chelator deferasirox synergises with chemotherapy to treat triple-negative breast cancers. J Pathol 246(1):103–114

    Article  CAS  PubMed  Google Scholar 

  72. Ponpuak M et al (2015) Secretory autophagy. Curr Opin Cell Biol 35:106–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ejlerskov P et al (2013) Tubulin polymerization-promoting protein (TPPP/p25α) promotes unconventional secretion of α-synuclein through exophagy by impairing autophagosome-lysosome fusion. J Biol Chem 288(24):17313–17335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nilsson P et al (2013) Aβ secretion and plaque formation depend on autophagy. Cell Rep 5(1):61–69

    Article  CAS  PubMed  Google Scholar 

  75. Winslow AR et al (2010) α-Synuclein impairs macroautophagy: implications for Parkinson’s disease. J Cell Biol 190(6):1023–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tanik SA et al (2013) Lewy body-like α-synuclein aggregates resist degradation and impair macroautophagy. J Biol Chem 288(21):15194–15210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yap TL et al (2011) Alpha-synuclein interacts with Glucocerebrosidase providing a molecular link between Parkinson and Gaucher diseases. J Biol Chem 286(32):28080–28088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yap TL et al (2013) Membrane-bound α-synuclein interacts with glucocerebrosidase and inhibits enzyme activity. Mol Genet Metab 108(1):56–64

    Article  CAS  PubMed  Google Scholar 

  79. Mazzulli JR et al (2011) Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell 146(1):37–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Choi I et al (2020) Microglia clear neuron-released α-synuclein via selective autophagy and prevent neurodegeneration. Nat Commun 11(1):1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chen L et al (2021) Corynoxine protects dopaminergic neurons through inducing autophagy and diminishing neuroinflammation in rotenone-induced animal models of Parkinson’s disease. Front Pharmacol 12:642900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

None.

Funding

This work was supported by the National Natural Science Foundation of China (31771124, 32170984, and 31871049), the Natural Science Foundation of Shandong Province (ZR2021MC116), the Excellent Innovative Team of Shandong Province, and the Taishan Scholars Construction Project.

Author information

Authors and Affiliations

Authors

Contributions

Ning Song and Junxia Xie designed and revised the article; Juntao Cui, Yu Yuan, and Jun Wang performed the experiments and analyzed the data. Ning Song and Juntao Cui wrote the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Ning Song or Junxia Xie.

Ethics declarations

Ethics Approval

Procedures were carried out in accordance with the NIH Guide for the Care and Use of Laboratory Animals and were approved by the Ethical Committee of the Medical College of Qingdao University.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, J., Yuan, Y., Wang, J. et al. Desferrioxamine Ameliorates Lipopolysaccharide-Induced Lipocalin-2 Upregulation via Autophagy Activation in Primary Astrocytes. Mol Neurobiol 59, 2052–2067 (2022). https://doi.org/10.1007/s12035-021-02687-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02687-1

Keywords

Navigation