Skip to main content
Log in

Loss of MIC60 Aggravates Neuronal Death by Inducing Mitochondrial Dysfunction in a Rat Model of Intracerebral Hemorrhage

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Mitochondrial damage has been reported to be a critical factor for secondary brain injury (SBI) induced by intracerebral hemorrhage (ICH). MIC60 is a key element of the mitochondrial contact site and cristae junction organizing system (MICOS), which takes a principal part in maintaining mitochondrial structure and function. The role of MIC60 and its underlying mechanisms in ICH-induced SBI are not clear, which will be investigated in this present study. To establish and emulate ICH model in vivo and in vitro, autologous blood was injected into the right basal ganglia of Sprague–Dawley (SD) rats; and primary-cultured cortical neurons were treated by oxygen hemoglobin (OxyHb). First, after ICH induction, mitochondria were damaged and exhibited mitochondrial crista-structure remodeling, and MIC60 protein levels were reduced. Furthermore, MIC60 overexpression reduced ICH-induced neuronal death both in vivo and in vitro. In addition, MIC60 upregulation reduced ICH-induced cerebral edema, neurobehavioral impairment, and cognitive dysfunction; by contrast, MIC60 knockdown had the opposite effect. Additionally, in primary-cultured neurons, MIC60 overexpression could reverse ICH-induced neuronal cell death and apoptosis, mitochondrial membrane potential collapse, and decrease of mitophagy, indicating that MIC60 overexpression can maintain the integrity of mitochondrial structures. Moreover, loss of MIC60 is after ICH-induced reduction in PINK1 levels and mislocalization of Parkin in primary-cultured neurons. Taken together, our findings suggest that MIC60 plays an important role in ICH-induced SBI and may represent a promising target for ICH therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed during the current study are not publicly available due to the confidential policy of our hospital but are available from the corresponding author on reasonable request.

Abbreviations

ICH:

Intracerebral hemorrhage

SBI:

Secondary brain injury

MICOS:

Mitochondrial contact site and cristae junction organizing system

OxyHb:

Oxygen hemoglobin

BBB:

Blood–brain barrier

siRNA:

Small interfering RNA

PVDF:

Polyvinylidene difluoride

MPTP:

Mitochondrial permeability transition pore

MMP:

Mitochondrial membrane potential

ROS:

Reactive oxygen species

References

  1. Singh SD, Brouwers HB, Senff JR, Pasi M, Goldstein J, Viswanathan A, Klijn CJM, Rinkel GJE (2020) Haematoma evacuation in cerebellar intracerebral haemorrhage: systematic review. J Neurol Neurosurg Psychiatry 91(1):82–87. https://doi.org/10.1136/jnnp-2019-321461

    Article  PubMed  Google Scholar 

  2. Rajashekar D, Liang JW (2021) Intracerebral hemorrhage. In: StatPearls. StatPearls Publishing, Treasure Island (FL)

  3. Donnellan C, Werring D (2019) Cognitive impairment before and after intracerebral haemorrhage: a systematic review. Neurol Sci. https://doi.org/10.1007/s10072-019-04150-5

    Article  PubMed  Google Scholar 

  4. Withers SE, Parry-Jones AR, Allan SM, Kasher PR (2020) A multi-model pipeline for translational intracerebral haemorrhage research. Transl Stroke Res 11(6):1229–1242. https://doi.org/10.1007/s12975-020-00830-z

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tao C, Keep RF, Xi G, Hua Y (2020) CD47 blocking antibody accelerates hematoma clearance after intracerebral hemorrhage in aged rats. Transl Stroke Res 11(3):541–551. https://doi.org/10.1007/s12975-019-00745-4

    Article  CAS  PubMed  Google Scholar 

  6. Liddle LJ, Ralhan S, Ward DL, Colbourne F (2020) Translational intracerebral hemorrhage research: has current neuroprotection research ARRIVEd at a standard for experimental design and reporting? Transl Stroke Res 11(6):1203–1213. https://doi.org/10.1007/s12975-020-00824-x

    Article  PubMed  PubMed Central  Google Scholar 

  7. Han X, Zhao X, Lan X, Li Q, Gao Y, Liu X, Wan J, Yang Z, Chen X, Zang W, Guo AM, Falck JR, Koehler RC, Wang J (2019) 20-HETE synthesis inhibition promotes cerebral protection after intracerebral hemorrhage without inhibiting angiogenesis. J Cereb Blood Flow Metab 39(8):1531–1543. https://doi.org/10.1177/0271678X18762645

    Article  CAS  PubMed  Google Scholar 

  8. Tschoe C, Bushnell CD, Duncan PW, Alexander-Miller MA, Wolfe SQ (2020) Neuroinflammation after Intracerebral hemorrhage and potential therapeutic Targets. J Stroke 22(1):29–46. https://doi.org/10.5853/jos.2019.02236

    Article  PubMed  PubMed Central  Google Scholar 

  9. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Annicchiarico-Petruzzelli M, Antonov AV, Arama E, Baehrecke EH, Barlev NA, Bazan NG, Bernassola F, Bertrand MJM, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Boya P, Brenner C, Campanella M, Candi E, Carmona-Gutierrez D, Cecconi F, Chan FK, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Cohen GM, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D’Angiolella V, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin KM, DeBerardinis RJ, Deshmukh M, Di Daniele N, Di Virgilio F, Dixit VM, Dixon SJ, Duckett CS, Dynlacht BD, El-Deiry WS, Elrod JW, Fimia GM, Fulda S, Garcia-Saez AJ, Garg AD, Garrido C, Gavathiotis E, Golstein P, Gottlieb E, Green DR, Greene LA, Gronemeyer H, Gross A, Hajnoczky G, Hardwick JM, Harris IS, Hengartner MO, Hetz C, Ichijo H, Jaattela M, Joseph B, Jost PJ, Juin PP, Kaiser WJ, Karin M, Kaufmann T, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Knight RA, Kumar S, Lee SW, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, Lopez-Otin C, Lowe SW, Luedde T, Lugli E, MacFarlane M, Madeo F, Malewicz M, Malorni W, Manic G, Marine JC, Martin SJ, Martinou JC, Medema JP, Mehlen P, Meier P, Melino S, Miao EA, Molkentin JD, Moll UM, Munoz-Pinedo C, Nagata S, Nunez G, Oberst A, Oren M, Overholtzer M, Pagano M, Panaretakis T, Pasparakis M, Penninger JM, Pereira DM, Pervaiz S, Peter ME, Piacentini M, Pinton P, Prehn JHM, Puthalakath H, Rabinovich GA, Rehm M, Rizzuto R, Rodrigues CMP, Rubinsztein DC, Rudel T, Ryan KM, Sayan E, Scorrano L, Shao F, Shi Y, Silke J, Simon HU, Sistigu A, Stockwell BR, Strasser A, Szabadkai G, Tait SWG, Tang D, Tavernarakis N, Thorburn A, Tsujimoto Y, Turk B, Vanden Berghe T, Vandenabeele P, Vander Heiden MG, Villunger A, Virgin HW, Vousden KH, Vucic D, Wagner EF, Walczak H, Wallach D, Wang Y, Wells JA, Wood W, Yuan J, Zakeri Z, Zhivotovsky B, Zitvogel L, Melino G, Kroemer G (2018) Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 25(3):486–541. https://doi.org/10.1038/s41418-017-0012-4

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kim-Han JS, Kopp SJ, Dugan LL, Diringer MN (2006) Perihematomal mitochondrial dysfunction after intracerebral hemorrhage. Stroke 37(10):2457–2462. https://doi.org/10.1161/01.STR.0000240674.99945.4e

    Article  CAS  PubMed  Google Scholar 

  11. Mishiro K, Imai T, Sugitani S, Kitashoji A, Suzuki Y, Takagi T, Chen H, Oumi Y, Tsuruma K, Shimazawa M, Hara H (2014) Diabetes mellitus aggravates hemorrhagic transformation after ischemic stroke via mitochondrial defects leading to endothelial apoptosis. PLoS One 9(8):e103818. https://doi.org/10.1371/journal.pone.0103818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Diao X, Zhou Z, Xiang W, Jiang Y, Tian N, Tang X, Chen S, Wen J, Chen M, Liu K, Li Q, Liao R (2020) Glutathione alleviates acute intracerebral hemorrhage injury via reversing mitochondrial dysfunction. Brain Res 1727:146514. https://doi.org/10.1016/j.brainres.2019.146514

    Article  CAS  PubMed  Google Scholar 

  13. Huang J, Jiang Q (2019) Dexmedetomidine protects against neurological dysfunction in a mouse intracerebral hemorrhage model by inhibiting mitochondrial dysfunction-derived oxidative stress. J Stroke Cerebrovasc Dis 28(5):1281–1289. https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.01.016

    Article  PubMed  Google Scholar 

  14. Zhou Y, Wang S, Li Y, Yu S, Zhao Y (2017) SIRT1/PGC-1alpha signaling promotes mitochondrial functional recovery and reduces apoptosis after intracerebral hemorrhage in Rats. Front Mol Neurosci 10:443. https://doi.org/10.3389/fnmol.2017.00443

    Article  CAS  PubMed  Google Scholar 

  15. Zheng J, Shi L, Liang F, Xu W, Li T, Gao L, Sun Z, Yu J, Zhang J (2018) Sirt3 ameliorates oxidative stress and mitochondrial dysfunction after intracerebral hemorrhage in diabetic rats. Front Neurosci 12:414. https://doi.org/10.3389/fnins.2018.00414

    Article  PubMed  PubMed Central  Google Scholar 

  16. Stoldt S, Stephan T, Jans DC, Bruser C, Lange F, Keller-Findeisen J, Riedel D, Hell SW, Jakobs S (2019) Mic60 exhibits a coordinated clustered distribution along and across yeast and mammalian mitochondria. Proc Natl Acad Sci U S A 116(20):9853–9858. https://doi.org/10.1073/pnas.1820364116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang RF, Zhao GW, Liang ST, Zhang Y, Sun LH, Chen HZ, Liu DP (2012) Mitofilin regulates cytochrome c release during apoptosis by controlling mitochondrial cristae remodeling. Biochem Biophys Res Commun 428(1):93–98. https://doi.org/10.1016/j.bbrc.2012.10.012

    Article  CAS  PubMed  Google Scholar 

  18. Zerbes RM, van der Klei IJ, Veenhuis M, Pfanner N, van der Laan M, Bohnert M (2012) Mitofilin complexes: conserved organizers of mitochondrial membrane architecture. Biol Chem 393(11):1247–1261. https://doi.org/10.1515/hsz-2012-0239

    Article  CAS  PubMed  Google Scholar 

  19. von der Malsburg K, Muller JM, Bohnert M, Oeljeklaus S, Kwiatkowska P, Becker T, Loniewska-Lwowska A, Wiese S, Rao S, Milenkovic D, Hutu DP, Zerbes RM, Schulze-Specking A, Meyer HE, Martinou JC, Rospert S, Rehling P, Meisinger C, Veenhuis M, Warscheid B, van der Klei IJ, Pfanner N, Chacinska A, van der Laan M (2011) Dual role of mitofilin in mitochondrial membrane organization and protein biogenesis. Dev Cell 21(4):694–707. https://doi.org/10.1016/j.devcel.2011.08.026

    Article  CAS  PubMed  Google Scholar 

  20. Xu H, Cao J, Xu J, Li H, Shen H, Li X, Wang Z, Wu J, Chen G (2019) GATA-4 regulates neuronal apoptosis after intracerebral hemorrhage via the NF-kappaB/Bax/caspase-3 pathway both in vivo and in vitro. Exp Neurol 315:21–31. https://doi.org/10.1016/j.expneurol.2019.01.018

    Article  CAS  PubMed  Google Scholar 

  21. Zhang P, Wang T, Zhang D, Zhang Z, Yuan S, Zhang J, Cao J, Li H, Li X, Shen H, Chen G (2019) Exploration of MST1-mediated secondary brain injury induced by intracerebral hemorrhage in rats via hippo signaling pathway. Transl Stroke Res 10(6):729–743. https://doi.org/10.1007/s12975-019-00702-1

    Article  CAS  PubMed  Google Scholar 

  22. Zhuang Y, Xu H, Richard SA, Cao J, Li H, Shen H, Yu Z, Zhang J, Wang Z, Li X, Chen G (2019) Inhibition of EPAC2 attenuates intracerebral hemorrhage-induced secondary brain injury via the p38/BIM/caspase-3 pathway. J Mol Neurosci 67(3):353–363. https://doi.org/10.1007/s12031-018-1215-y

    Article  CAS  PubMed  Google Scholar 

  23. Fan W, Li X, Zhang D, Li H, Shen H, Liu Y, Chen G (2019) Detrimental role of miRNA-144-3p in intracerebral hemorrhage induced secondary brain injury is mediated by formyl peptide receptor 2 downregulation both in vivo and in vitro. Cell Transplant 28(6):723–738. https://doi.org/10.1177/0963689718817219

    Article  PubMed  Google Scholar 

  24. Tan X, Yang Y, Xu J, Zhang P, Deng R, Mao Y, He J, Chen Y, Zhang Y, Ding J, Li H, Shen H, Li X, Dong W, Chen G (2019) Luteolin exerts neuroprotection via modulation of the p62/Keap1/Nrf2 pathway in intracerebral hemorrhage. Front Pharmacol 10:1551. https://doi.org/10.3389/fphar.2019.01551

    Article  CAS  PubMed  Google Scholar 

  25. Manaenko A, Yang P, Nowrangi D, Budbazar E, Hartman RE, Obenaus A, Pearce WJ, Zhang JH, Tang J (2018) Inhibition of stress fiber formation preserves blood-brain barrier after intracerebral hemorrhage in mice. J Cereb Blood Flow Metab 38(1):87–102. https://doi.org/10.1177/0271678X16679169

    Article  CAS  PubMed  Google Scholar 

  26. Song H, Yuan S, Zhang Z, Zhang J, Zhang P, Cao J, Li H, Li X, Shen H, Wang Z, Chen G (2019) Sodium/hydrogen exchanger 1 participates in early brain injury after subarachnoid hemorrhage both in vivo and in vitro via promoting neuronal apoptosis. Cell Transplant 28(8):985–1001. https://doi.org/10.1177/0963689719834873

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jin L, Cai Q, Wang S, Wang S, Mondal T, Wang J, Quan Z (2018) Long noncoding RNA MEG3 regulates LATS2 by promoting the ubiquitination of EZH2 and inhibits proliferation and invasion in gallbladder cancer. Cell Death Dis 9(10):1017. https://doi.org/10.1038/s41419-018-1064-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Katayama H, Kogure T, Mizushima N, Yoshimori T, Miyawaki A (2011) A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery. Chem Biol 18(8):1042–1052. https://doi.org/10.1016/j.chembiol.2011.05.013

    Article  CAS  PubMed  Google Scholar 

  29. Wang Z, Zhou F, Dou Y, Tian X, Liu C, Li H, Shen H, Chen G (2018) Melatonin alleviates intracerebral hemorrhage-induced secondary brain injury in rats via suppressing apoptosis, inflammation, oxidative stress, DNA damage, and mitochondria injury. Transl Stroke Res 9(1):74–91. https://doi.org/10.1007/s12975-017-0559-x

    Article  CAS  PubMed  Google Scholar 

  30. Cabral-Costa JV, Kowaltowski AJ (2020) Neurological disorders and mitochondria. Mol Aspects Med 71:100826. https://doi.org/10.1016/j.mam.2019.10.003

    Article  CAS  PubMed  Google Scholar 

  31. Schorr S, van der Laan M (2018) Integrative functions of the mitochondrial contact site and cristae organizing system. Semin Cell Dev Biol 76:191–200. https://doi.org/10.1016/j.semcdb.2017.09.021

    Article  CAS  PubMed  Google Scholar 

  32. John GB, Shang Y, Li L, Renken C, Mannella CA, Selker JM, Rangell L, Bennett MJ, Zha J (2005) The mitochondrial inner membrane protein mitofilin controls cristae morphology. Mol Biol Cell 16(3):1543–1554. https://doi.org/10.1091/mbc.e04-08-0697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Van Laar VS, Dukes AA, Cascio M, Hastings TG (2008) Proteomic analysis of rat brain mitochondria following exposure to dopamine quinone: implications for Parkinson disease. Neurobiol Dis 29(3):477–489. https://doi.org/10.1016/j.nbd.2007.11.007

    Article  CAS  PubMed  Google Scholar 

  34. Myung J, Gulesserian T, Fountoulakis M, Lubec G (2003) Deranged hypothetical proteins Rik protein, Nit protein 2 and mitochondrial inner membrane protein, Mitofilin, in fetal Down syndrome brain. Cell Mol Biol (Noisy-le-grand) 49(5):739–746

    CAS  Google Scholar 

  35. Rabl R, Soubannier V, Scholz R, Vogel F, Mendl N, Vasiljev-Neumeyer A, Korner C, Jagasia R, Keil T, Baumeister W, Cyrklaff M, Neupert W, Reichert AS (2009) Formation of cristae and crista junctions in mitochondria depends on antagonism between Fcj1 and Su e/g. J Cell Biol 185(6):1047–1063. https://doi.org/10.1083/jcb.200811099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Harner M, Korner C, Walther D, Mokranjac D, Kaesmacher J, Welsch U, Griffith J, Mann M, Reggiori F, Neupert W (2011) The mitochondrial contact site complex, a determinant of mitochondrial architecture. EMBO J 30(21):4356–4370. https://doi.org/10.1038/emboj.2011.379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Paumard P, Vaillier J, Coulary B, Schaeffer J, Soubannier V, Mueller DM, Brethes D, di Rago JP, Velours J (2002) The ATP synthase is involved in generating mitochondrial cristae morphology. EMBO J 21(3):221–230. https://doi.org/10.1093/emboj/21.3.221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tsai PI, Lin CH, Hsieh CH, Papakyrikos AM, Kim MJ, Napolioni V, Schoor C, Couthouis J, Wu RM, Wszolek ZK, Winter D, Greicius MD, Ross OA, Wang X (2018) PINK1 phosphorylates MIC60/mitofilin to control structural plasticity of mitochondrial crista junctions. Mol Cell. 69(5):744-756 e746. https://doi.org/10.1016/j.molcel.2018.01.026

    Article  CAS  PubMed  Google Scholar 

  39. James ML, Warner DS, Laskowitz DT (2008) Preclinical models of intracerebral hemorrhage: a translational perspective. Neurocrit Care 9(1):139–152. https://doi.org/10.1007/s12028-007-9030-2

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Key R&D Program of China (No. 2018YFC1312600 and No. 2018YFC1312601), the National Natural Science Foundation of China (No. 81771255 and No.81830036 and No.81801151), the Natural Science Foundation of Jiangsu Province under grant (No. BK20180204), the Project of Jiangsu Provincial Medical Innovation Team (No. CXTDA2017003), the Project of Jiangsu Provincial Medical key Talent (No. ZDRCA2016040), Suzhou Science and Technology (No. SS2019056), Jiangsu Commission of Health (No. K2019001), Suzhou Key Medical Centre (No. Szzx201501), Suzhou Government (No. SYS2019045), and Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX20_2694).

Author information

Authors and Affiliations

Authors

Contributions

GC and XL participated in the design of this study. RD and WW performed the experiments and wrote the paper. XX and JD helped to design the analysis strategy and implement the analysis and constructive discussion. JW and YS helped conduct the literature review. HL and HS reviewed and edited the manuscript. All authors have critically revised the manuscript and approved the final version.

Corresponding authors

Correspondence to Xiang Li or Gang Chen.

Ethics declarations

Ethics Approval and Consent to Participate

All animal experiments are strictly in accordance with the guideline of Soochow University institutional Animal Care and Use Committee.

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, R., Wang, W., Xu, X. et al. Loss of MIC60 Aggravates Neuronal Death by Inducing Mitochondrial Dysfunction in a Rat Model of Intracerebral Hemorrhage. Mol Neurobiol 58, 4999–5013 (2021). https://doi.org/10.1007/s12035-021-02468-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02468-w

Keywords

Navigation