Skip to main content
Log in

Defective Mitochondrial Dynamics Underlie Manganese-Induced Neurotoxicity

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Perturbations in mitochondrial dynamics have been observed in most neurodegenerative diseases. Here, we focus on manganese (Mn)-induced Parkinsonism-like neurodegeneration, a disorder associated with the preferential of Mn in the basal ganglia where the mitochondria are considered an early target. Despite the extensive characterization of the clinical presentation of manganism, the mechanism by which Mn mediated mitochondrial toxicity is unclear. In this study we hypothesized whether Mn exposure alters mitochondrial activity, including axonal transport of mitochondria and mitochondrial dynamics, morphology, and network. Using primary neuron cultures exposed to 100 μM Mn (which is considered the threshold of Mn toxicity in vitro) and intraperitoneal injections of MnCl2 (25mg/kg) in rat, we observed that Mn increased mitochondrial fission mediated by phosphorylation of dynamin-related protein-1 at serine 616 (p-s616-DRP1) and decreased mitochondrial fusion proteins (MFN1 and MFN2) leading to mitochondrial fragmentation, defects in mitochondrial respiratory capacity, and mitochondrial ultrastructural damage in vivo and in vitro. Furthermore, Mn exposure impaired mitochondrial trafficking by decreasing dynactin (DCTN1) and kinesin-1 (KIF5B) motor proteins and increasing destabilization of the cytoskeleton at protein and gene levels. In addition, mitochondrial communication may also be altered by Mn exposure, increasing the length of nanotunnels to reach out distal mitochondria. These findings revealed an unrecognized role of Mn in dysregulation of mitochondrial dynamics providing a potential explanation of early hallmarks of the disorder, as well as a possible common pathway with neurological disorders arising upon chronic Mn exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The RNA-sequencing dataset generated during this study is available on NCBI GEO with the accession number GSE153017. All other data are available from the corresponding authors upon reasonable request.

References

  1. Schon EA, Przedborski S (2011) Mitochondria: the next (neurode)generation. Neuron 70:1033–1053. https://doi.org/10.1016/j.neuron.2011.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Misgeld T, Schwarz TL (2017) Mitostasis in neurons: maintaining mitochondria in an extended cellular architecture. Neuron 96:651–666. https://doi.org/10.1016/j.neuron.2017.09.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Friedman JR, Nunnari J (2014) Mitochondrial form and function. Nature 505:335–343

    Article  CAS  Google Scholar 

  4. Kraus F, Ryan MT (2017) The constriction and scission machineries involved in mitochondrial fission. J Cell Sci 130:2953–2960

    CAS  PubMed  Google Scholar 

  5. Saxton WM, Hollenbeck PJ (2012) The axonal transport of mitochondria. J Cell Sci 125:2095–2104. https://doi.org/10.1242/jcs.053850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Helley MP, Pinnell J, Sportelli C, Tieu K (2017) Mitochondria : a common target for genetic mutations and environmental toxicants in Parkinson’s disease. 8:1–24. https://doi.org/10.3389/fgene.2017.00177

  7. Smith EF, Shaw PJ, De Vos KJ (2019) The role of mitochondria in amyotrophic lateral sclerosis. Neurosci Lett 710:132933

    Article  Google Scholar 

  8. Gavin CE, Gunter KK, Gunter TE (1990) Manganese and calcium efflux kinetics in brain mitochondria. Relevance to manganese toxicity. Biochem J 266:329–334. https://doi.org/10.1042/bj2660329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gavin CE, Gunter KK, Gunter TE (1992) Mn2+ sequestration by mitochondria and inhibition of oxidative phosphorylation. Toxicol Appl Pharmacol 115:1–5. https://doi.org/10.1016/0041-008X(92)90360-5

    Article  CAS  PubMed  Google Scholar 

  10. Gavin CE, Gunter KK, Gunter TE (1999) Manganese and calcium transport in mitochondria: Implications for manganese toxicity. Neurotoxicology 20:445–454

    CAS  PubMed  Google Scholar 

  11. Morello M, Canini A, Mattioli P, Sorge RP, Alimonti A, Bocca B, Forte G, Martorana A et al (2008) Sub-cellular localization of manganese in the basal ganglia of normal and manganese-treated rats. An electron spectroscopy imaging and electron energy-loss spectroscopy study. Neurotoxicology 29:60–72. https://doi.org/10.1016/j.neuro.2007.09.001

    Article  CAS  PubMed  Google Scholar 

  12. Tian Y, Chen C, Guo S, Zhao L, Yan Y (2018) Exploration of the establishment of manganese poisoning rat model and analysis of discriminant methods. Toxicology 410:193–198. https://doi.org/10.1016/j.tox.2018.08.006

    Article  CAS  PubMed  Google Scholar 

  13. Villalobos V, Hernández-Fonseca JP, Bonilla E, Medina-Leendertz S, Mora M, Mosquera J (2015) Ultrastructural changes of caudate nucleus in mice chronically treated with manganese. Ultrastruct Pathol 39:217–225. https://doi.org/10.3109/01913123.2014.991885

    Article  PubMed  Google Scholar 

  14. Smith MR, Fernandes J, Go YM, Jones DP (2017) Redox dynamics of manganese as a mitochondrial life-death switch. Biochem Biophys Res Commun 482:388–398. https://doi.org/10.1016/j.bbrc.2016.10.126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Alaimo A, Gorojod RM, Beauquis J, Muñoz MJ, Saravia F, Kotler ML (2014) Deregulation of mitochondria-shaping proteins Opa-1 and Drp-1 in manganese-induced apoptosis. PLoS One 9:e91848. https://doi.org/10.1371/journal.pone.0091848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu X, Yang J, Lu C, Jiang S, Nie X, Han J, Yin L, Jiang J (2017) Downregulation of Mfn2 participates in manganese-induced neuronal apoptosis in rat striatum and PC12 cells. Neurochem Int 108:40–51. https://doi.org/10.1016/j.neuint.2017.02.008

    Article  CAS  PubMed  Google Scholar 

  17. Bouabid S, Tinakoua A, Lakhdar-Ghazal N, Benazzouz A (2016) Manganese neurotoxicity: behavioral disorders associated with dysfunctions in the basal ganglia and neurochemical transmission. J Neurochem 136:677–691

    Article  CAS  Google Scholar 

  18. Aschner M, Erikson KM, Hernández EH, Tjalkens R (2009) Manganese and its role in Parkinson’s disease: from transport to neuropathology. NeuroMolecular Med 11:252–266

    Article  CAS  Google Scholar 

  19. Cunha Martins A Jr, Morcillo P et al (2019) New insights on the role of manganese in Alzheimer’s disease and Parkinson’s disease. Int J Environ Res Public Health 16:1–8

    Google Scholar 

  20. Weinert M, Selvakumar T, Tierney TS, Alavian KN (2015) Isolation, culture and long-term maintenance of primary mesencephalic dopaminergic neurons from embryonic rodent brains. J Vis Exp 96:1–5. https://doi.org/10.3791/52475

    Article  CAS  Google Scholar 

  21. Rambold AS, Kostelecky B, Elia N, Lippincott-Schwartz J (2011) Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc Natl Acad Sci U S A 108:10190–10195. https://doi.org/10.1073/pnas.1107402108

    Article  PubMed  PubMed Central  Google Scholar 

  22. Valente AJ, Maddalena LA, Robb EL, Moradi F, Stuart JA (2017) A simple ImageJ macro tool for analyzing mitochondrial network morphology in mammalian cell culture. Acta Histochem 119:315–326. https://doi.org/10.1016/j.acthis.2017.03.001

    Article  CAS  PubMed  Google Scholar 

  23. Kremer JR, Mastronarde DN, McIntosh JR (1996) Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116:71–76. https://doi.org/10.1006/jsbi.1996.0013

    Article  CAS  PubMed  Google Scholar 

  24. Mastronarde DN, Held SR (2017) Automated tilt series alignment and tomographic reconstruction in IMOD. J Struct Biol 197:102–113. https://doi.org/10.1016/j.jsb.2016.07.011

    Article  PubMed  Google Scholar 

  25. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:1–21. https://doi.org/10.1186/s13059-014-0550-8

    Article  CAS  Google Scholar 

  26. Kolde R (2015) Pheatmap: pretty heatmaps. R package version 1.0.12

  27. Wickham H (2016) ggplot2: elegant graphics for data analysis

  28. Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT et al (2017) The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res 45:D362–D368. https://doi.org/10.1093/nar/gkw937

    Article  CAS  PubMed  Google Scholar 

  29. Bowman AB, Aschner M (2014) Considerations on manganese (Mn) treatments for in vitro studies. Neurotoxicology 64:2391–2404. https://doi.org/10.1038/jid.2014.371

    Article  CAS  Google Scholar 

  30. Taguchi N, Ishihara N, Jofuku A, Oka T, Mihara K (2007) Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J Biol Chem 282:11521–11529. https://doi.org/10.1074/jbc.M607279200

    Article  CAS  PubMed  Google Scholar 

  31. Zhang Z, Liu L, Jiang X (2016) The essential role of Drp1 and its regulation by s-nitrosylation of parkin in dopaminergic neurodegeneration: implications for Parkinson’s disease. Antioxid Redox Signal 25:609–622. https://doi.org/10.1089/ars.2016.6634

    Article  CAS  PubMed  Google Scholar 

  32. Flippo KH, Strack S (2017) Mitochondrial dynamics in neuronal injury, development and plasticity. J Cell Sci 130:671–681. https://doi.org/10.1242/jcs.171017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen H, Chan DC (2009) Mitochondrial dynamics-fusion, fission, movement, and mitophagy-in neurodegenerative diseases. Hum Mol Genet 18:169–176. https://doi.org/10.1093/hmg/ddp326

    Article  CAS  Google Scholar 

  34. Mishra P, Chan DC (2016) Metabolic regulation of mitochondrial dynamics. J Cell Biol 212:379–387. https://doi.org/10.1083/jcb.201511036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Knott AB, Perkins G, Schwarzenbacher R, Bossy-Wetzel E (2008) Mitochondrial fragmentation in neurodegeneration. Nat Rev Neurosci 9:505–518. https://doi.org/10.1038/nrn2417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Area-Gomez E, Guardia-Laguarta C, Schon EA, Przedborski S (2019) Mitochondria, OxPhos, and neurodegeneration: cells are not just running out of gas. J Clin Invest 129:34–45. https://doi.org/10.1172/JCI120848

    Article  PubMed  PubMed Central  Google Scholar 

  37. Warren EB, Bryan MR, Morcillo P et al (2020) Manganese-induced mitochondrial dysfunction is not detectable at exposures below the acute cytotoxic threshold in neuronal cell types. Toxicol Sci 176:446–459. https://doi.org/10.1093/toxsci/kfaa079

  38. Chen P, Parmalee N, Aschner M (2014) Genetic factors and manganese-induced neurotoxicity. Front Genet 5:265

    PubMed  PubMed Central  Google Scholar 

  39. Lao Y, Dion LA, Gilbert G, Bouchard MF, Rocha G, Wang Y, Leporé N, Saint-Amour D (2017) Mapping the basal ganglia alterations in children chronically exposed to manganese. Sci Rep 7:1–9. https://doi.org/10.1038/srep41804

    Article  CAS  Google Scholar 

  40. O’Neal SL, Lee JW, Zheng W, Cannon JR (2014) Subacute manganese exposure in rats is a neurochemical model of early manganese toxicity. Neurotoxicology 44:303–313. https://doi.org/10.1016/j.neuro.2014.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu X, Hajnóczky G (2011) Altered fusion dynamics underlie unique morphological changes in mitochondria during hypoxia-reoxygenation stress. Cell Death Differ 18:1561–1572. https://doi.org/10.1038/cdd.2011.13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Han SM, Baig HS, Hammarlund M (2016) Mitochondria localize to injured axons to support regeneration. Neuron 92:1308–1323. https://doi.org/10.1016/j.neuron.2016.11.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lin MY, Sheng ZH (2015) Regulation of mitochondrial transport in neurons. Exp Cell Res 334:35–44. https://doi.org/10.1016/j.yexcr.2015.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xu Z, Schaedel L, Portran D et al (2017) Microtubules acquire resistance from mechanical breakage through intralumenal acetylation. Science (80- ) 356:328–332. https://doi.org/10.1126/science.aai8764

    Article  CAS  Google Scholar 

  45. Buttlaire DH, Czuba BA, Stevens TH, Lee YC, Himes RH (1980) Manganous ion binding to tubulin. J Biol Chem 255:2164–2168

    Article  CAS  Google Scholar 

  46. Sleigh JN, Rossor AM, Fellows AD, Tosolini AP, Schiavo G (2019) Axonal transport and neurological disease. Nat Rev Neurol 15:691–703. https://doi.org/10.1038/s41582-019-0257-2

    Article  PubMed  Google Scholar 

  47. Tanaka Y, Kanai Y, Okada Y, Nonaka S, Takeda S, Harada A, Hirokawa N (1998) Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria. Cell 93:1147–1158. https://doi.org/10.1016/S0092-8674(00)81459-2

    Article  CAS  PubMed  Google Scholar 

  48. Martin MA, Iyadurai SJ, Gassman A, Gindhart JG Jr, Hays TS, Saxton WM (1999) Cytoplasmic dynein, the dynactin complex, and kinesin are interdependent and essential for fast axonal transport. Mol Biol Cell 10:3717–3728. https://doi.org/10.1091/mbc.10.11.3717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hung RJ, Terman JR (2011) Extracellular inhibitors, repellents, and semaphorin/plexin/MICAL-mediated actin filament disassembly. Cytoskeleton 68:415–433. https://doi.org/10.1002/cm.20527

    Article  CAS  PubMed  Google Scholar 

  50. Zhang Y, Jeffrey J, Dong F, Zhang J, Kao WWY, Liu CY, Yuan Y (2019) Repressed wnt signaling accelerates the aging process in mouse eyes. J Ophthalmol 2019:1–11. https://doi.org/10.1155/2019/7604396

    Article  CAS  Google Scholar 

  51. Moslehi M, Ng DCH, Bogoyevitch MA (2017) Dynamic microtubule association of doublecortin X (DCX) is regulated by its c-terminus. Sci Rep 7:1–11. https://doi.org/10.1038/s41598-017-05340-x

    Article  CAS  Google Scholar 

  52. Lin S, Liu M, Mozgova OI, Yu W, Baas PW (2012) Mitotic motors coregulate microtubule patterns in axons and dendrites. J Neurosci 32:14033–14049. https://doi.org/10.1523/jneurosci.3070-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Akum BF, Chen M, Gunderson SI, Riefler GM, Scerri-Hansen MM, Firestein BL (2004) Cypin regulates dendrite patterning in hippocampal neurons by promoting microtubule assembly. Nat Neurosci 7:145–152. https://doi.org/10.1038/nn1179

    Article  CAS  PubMed  Google Scholar 

  54. Ang BK, Lim CY, Koh SS et al (2007) ArhGAP9, a novel MAP kinase docking protein, inhibits Erk and p38 activation through WW domain binding. J Mol Signal 2. https://doi.org/10.1186/1750-2187-2-1

  55. Ishizuka K, Tabata H, Ito H, Kushima I, Noda M, Yoshimi A, Usami M, Watanabe K et al (2018) Possible involvement of a cell adhesion molecule, migfilin, in brain development and pathogenesis of autism spectrum disorders. J Neurosci Res 96:789–802. https://doi.org/10.1002/jnr.24194

    Article  CAS  PubMed  Google Scholar 

  56. Lee GH, Kim SH, Homayouni R, D’Arcangelo G (2012) Dab2ip regulates neuronal migration and neurite outgrowth in the developing neocortex. PLoS One 7:1–14. https://doi.org/10.1371/journal.pone.0046592

    Article  CAS  Google Scholar 

  57. Roffers-Agarwal J, Xanthos JB, Miller JR (2005) Regulation of actin cytoskeleton architecture by Eps8 and Abi1. BMC Cell Biol 6:1–15. https://doi.org/10.1186/1471-2121-6-36

    Article  CAS  Google Scholar 

  58. Mythri RB, Raghunath NR, Narwade SC, Pandareesh MDR, Sabitha KR, Aiyaz M, Chand B, Sule M et al (2017) Manganese- and 1-methyl-4-phenylpyridinium-induced neurotoxicity display differences in morphological, electrophysiological and genome-wide alterations: implications for idiopathic Parkinson’s disease. J Neurochem 143:334–358. https://doi.org/10.1111/jnc.14147

    Article  CAS  PubMed  Google Scholar 

  59. Huang X, Sun L, Ji S, Zhao T, Zhang W, Xu J, Zhang J, Wang Y et al (2013) Kissing and nanotunneling mediate intermitochondrial communication in the heart. Proc Natl Acad Sci U S A 110:2846–2851. https://doi.org/10.1073/pnas.1300741110

    Article  PubMed  PubMed Central  Google Scholar 

  60. Liu X, Weaver D, Shirihai O, Hajnóczky G (2009) Mitochondrial kiss-and-run: interplay between mitochondrial motility and fusion-fission dynamics. EMBO J 28:3074–3089. https://doi.org/10.1038/emboj.2009.255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Vincent AE, Turnbull DM, Eisner V, Hajnóczky G, Picard M (2017) Mitochondrial nanotunnels. Trends Cell Biol 27:787–799. https://doi.org/10.1016/j.tcb.2017.08.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Picard M, McManus MJ, Csordás G et al (2015) Trans-mitochondrial coordination of cristae at regulated membrane junctions. Nat Commun 6:4–11. https://doi.org/10.1038/ncomms7259

    Article  CAS  Google Scholar 

  63. Lin Y, Li LL, Nie W, Liu X, Adler A, Xiao C, Lu F, Wang L et al (2019) Brain activity regulates loose coupling between mitochondrial and cytosolic Ca2+ transients. Nat Commun 10:5277. https://doi.org/10.1038/s41467-019-13142-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. MacAskill AF, Kittler JT (2010) Control of mitochondrial transport and localization in neurons. Trends Cell Biol 20:102–112. https://doi.org/10.1016/j.tcb.2009.11.002

    Article  CAS  PubMed  Google Scholar 

  65. Kitazawa M, Anantharam V, Yang Y, Hirata Y, Kanthasamy A, Kanthasamy AG (2005) Activation of protein kinase Cδ by proteolytic cleavage contributes to manganese-induced apoptosis in dopaminergic cells: protective role of Bcl-2. Biochem Pharmacol 69:133–146. https://doi.org/10.1016/j.bcp.2004.08.035

    Article  CAS  PubMed  Google Scholar 

  66. Sharma M, Ioannidis JPA, Aasly JO, Annesi G, Brice A, Bertram L, Bozi M, Barcikowska M et al (2012) A multi-centre clinico-genetic analysis of the VPS35 gene in Parkinson disease indicates reduced penetrance for disease-associated variants. J Med Genet 49:721–726. https://doi.org/10.1136/jmedgenet-2012-101155

    Article  CAS  PubMed  Google Scholar 

  67. Tang FL, Liu W, Hu JX, Erion JR, Ye J, Mei L, Xiong WC (2015) VPS35 deficiency or mutation causes dopaminergic neuronal loss by impairing mitochondrial fusion and function. Cell Rep 12:1631–1643. https://doi.org/10.1016/j.celrep.2015.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sarkar S, Rokad D, Malovic E et al (2019) Manganese activates NLRP3 inflammasome signaling and propagates exosomal release of ASC in microglial cells. Sci Signal 12:eaat9900. https://doi.org/10.1126/scisignal.aat9900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tabuchi M, Yoshimori T, Yamaguchi K, Yoshida T, Kishi F (2000) Human NRAMP2/DMT1, which mediates iron transport across endosomal membranes, is localized to late endosomes and lysosomes in HEp-2 cells. J Biol Chem 275:22220–22228. https://doi.org/10.1074/jbc.M001478200

    Article  CAS  PubMed  Google Scholar 

  70. Wang T, Wang Q, Song R, Zhang Y, Yang J, Wang Y, Yuan Y, Bian J et al (2016) Cadmium induced inhibition of autophagy is associated with microtubule disruption and mitochondrial dysfunction in primary rat cerebral cortical neurons. Neurotoxicol Teratol 53:11–18. https://doi.org/10.1016/j.ntt.2015.11.007

    Article  CAS  PubMed  Google Scholar 

  71. Eshun-Wilson L, Zhang R, Portran D, Nachury MV, Toso DB, Löhr T, Vendruscolo M, Bonomi M et al (2019) Effects of α-tubulin acetylation on microtubule structure and stability. Proc Natl Acad Sci U S A 116:10366–10371. https://doi.org/10.1073/pnas.1900441116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Janke C, Montagnac G (2017) Causes and consequences of microtubule acetylation. Curr Biol 27:R1287–R1292. https://doi.org/10.1016/j.cub.2017.10.044

    Article  CAS  Google Scholar 

  73. Cappelletti G, Surrey T, Maci R (2005) The parkinsonism producing neurotoxin MPP+ affects microtubule dynamics by acting as a destabilising factor. FEBS Lett 579:4781–4786. https://doi.org/10.1016/j.febslet.2005.07.058

    Article  CAS  PubMed  Google Scholar 

  74. Alper JD, Decker F, Agana B, Howard J (2014) The Motility of axonemal dynein is regulated by the tubulin code. Biophys J 107:2872–2880. https://doi.org/10.1016/j.bpj.2014.10.061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Reed NA, Cai D, Blasius TL, Jih GT, Meyhofer E, Gaertig J, Verhey KJ (2006) Microtubule acetylation promotes kinesin-1 binding and transport. Curr Biol 16:2166–2172. https://doi.org/10.1016/j.cub.2006.09.014

    Article  CAS  PubMed  Google Scholar 

  76. Skiniotis G, Cochran JC, Müller J, Mandelkow E, Gilbert SP, Hoenger A (2004) Modulation of kinesin binding by the C-termini of tubulin. EMBO J 23:989–999. https://doi.org/10.1038/sj.emboj.7600118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang Z, Sheetz MP (2000) The C-terminus of tubulin increases cytoplasmic dynein and kinesin processivity. Biophys J 78:1955–1964. https://doi.org/10.1016/S0006-3495(00)76743-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ye F, Kim C, Ginsberg MH (2012) Reconstruction of integrin activation. 119:39–42. https://doi.org/10.1182/blood-2011-04-292128

  79. Cheah M, Andrews MR (2018) Integrin activation: implications for axon regeneration. https://doi.org/10.3390/cells7030020

  80. Tan CL, Kwok JCF, Patani R, ffrench-Constant C, Chandran S, Fawcett JW (2011) Integrin activation promotes axon growth on inhibitory chondroitin sulfate proteoglycans by enhancing integrin signaling. J Neurosci 31:6289–6295. https://doi.org/10.1523/JNEUROSCI.0008-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Prudent J, Popgeorgiev N, Gadet R, Deygas M, Rimokh R, Gillet G (2016) Mitochondrial Ca2+ uptake controls actin cytoskeleton dynamics during cell migration. Sci Rep 6:1–13. https://doi.org/10.1038/srep36570

    Article  CAS  Google Scholar 

  82. Kerstein PC, Patel KM, Gomez TM (2017) Calpain-mediated proteolysis of talin and FAK regulates adhesion dynamics necessary for axon guidance. J Neurosci 37:1568–1580. https://doi.org/10.1523/JNEUROSCI.2769-16.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ijomone OM, Aluko OM, Okoh CO et al (2019) Role for calcium signaling in manganese neurotoxicity. J Trace Elem Med Biol 56:146–155. https://doi.org/10.1016/j.jtemb.2019.08.006

    Article  CAS  PubMed  Google Scholar 

  84. Palazzo AF, Eng CH, Schlaepfer DD et al (2004) Localized stabilization of microtubules by integrin- and FAK-facilitated rho signaling. Science (80- ) 303:836–839. https://doi.org/10.1126/science.1091325

    Article  CAS  Google Scholar 

  85. Quintanar L, Montiel T, Márquez M, González A, Massieu L (2012) Calpain activation is involved in acute manganese neurotoxicity in the rat striatum in vivo. Exp Neurol 233:182–192. https://doi.org/10.1016/j.expneurol.2011.09.032

    Article  CAS  PubMed  Google Scholar 

  86. Xu B, Liu W, Deng Y, Yang TY, Feng S, Xu ZF (2015) Inhibition of calpain prevents manganese-induced cell injury and alpha-synuclein oligomerization in organotypic brain slice cultures. PLoS One 10:e0119205. https://doi.org/10.1371/journal.pone.0119205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Eisner V, Picard M, Hajnóczky G (2018) Mitochondrial dynamics in adaptive and maladaptive cellular stress responses. Nat Cell Biol 20:755–765. https://doi.org/10.1038/s41556-018-0133-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kiryu-Seo S, Tamada H, Kato Y, Yasuda K, Ishihara N, Nomura M, Mihara K, Kiyama H (2016) Mitochondrial fission is an acute and adaptive response in injured motor neurons. Sci Rep 6:1–14. https://doi.org/10.1038/srep28331

    Article  CAS  Google Scholar 

  89. Zhang L, Trushin S, Christensen TA, Bachmeier BV, Gateno B, Schroeder A, Yao J, Itoh K et al (2016) Altered brain energetics induces mitochondrial fission arrest in Alzheimer’s disease. Sci Rep 6:1–12. https://doi.org/10.1038/srep18725

    Article  CAS  Google Scholar 

  90. Yang L, Long Q, Liu J, Tang H, Li Y, Bao F, Qin D, Pei D et al (2015) Mitochondrial fusion provides an “initial metabolic complementation” controlled by mtDNA. Cell Mol Life Sci 72:2585–2598. https://doi.org/10.1007/s00018-015-1863-9

    Article  CAS  PubMed  Google Scholar 

  91. Dai J, Buijs RM, Kamphorst W, Swaab DF (2002) Impaired axonal transport of cortical neurons in Alzheimer’s disease is associated with neuropathological changes. Brain Res 948:138–144. https://doi.org/10.1016/S0006-8993(02)03152-9

    Article  CAS  PubMed  Google Scholar 

  92. Kim J, Choi IY, Michaelis ML, Lee P (2011) Quantitative in vivo measurement of early axonal transport deficits in a triple transgenic mouse model of Alzheimer’s disease using manganese-enhanced MRI. Neuroimage 56:1286–1292. https://doi.org/10.1016/j.neuroimage.2011.02.039

    Article  PubMed  Google Scholar 

  93. Trushina E, Nemutlu E, Zhang S, Christensen T, Camp J, Mesa J, Siddiqui A, Tamura Y et al (2012) Defects in mitochondrial dynamics and metabolomic signatures of evolving energetic stress in mouse models of familial Alzheimer’s disease. PLoS One 7:e32737. https://doi.org/10.1371/journal.pone.0032737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cartelli D, Ronchi C, Maggioni MG, Rodighiero S, Giavini E, Cappelletti G (2010) Microtubule dysfunction precedes transport impairment and mitochondria damage in MPP+-induced neurodegeneration. J Neurochem 115:247–258. https://doi.org/10.1111/j.1471-4159.2010.06924.x

    Article  CAS  PubMed  Google Scholar 

  95. Mehta K, Chacko LA, Chug MK, Jhunjhunwala S, Ananthanarayanan V (2019) Association of mitochondria with microtubules inhibits mitochondrial fission by precluding assembly of the fission protein Dnm1. J Biol Chem 294:3385–3396. https://doi.org/10.1074/jbc.RA118.006799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Misko A, Jiang S, Wegorzewska I, Milbrandt J, Baloh RH (2010) Mitofusin 2 is necessary for transport of axonal mitochondria and interacts with the Miro/Milton complex. J Neurosci 30:4232–4240. https://doi.org/10.1523/JNEUROSCI.6248-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Vera DesMarais, Peng Guo, Andrea Briceno, Hillary Guzik, Timothy Mendez and Xheni Nishku from the Analytical Imaging Facility, Albert Einstein College of Medicine, for the invaluable help acquiring the images, the technical assistance, and their critical comments. We thank Xueliang Du for the technical support with the Seahorse measurements. Lastly, we would like to acknowledge Dr. Estela Area Gomez (Columbia University, NY) for critical reading of the manuscript.

Code Availability

Customized scripts generated for this study are available from the corresponding author on request.

Funding

This work was supported by the National Institute of Environmental Health Sciences R01-ES10563 grant to M.A. The microscopy images were acquired at the Analytical Imaging Facility of Albert Einstein College of Medicine, which was partially funded by NCI Cancer Center Support Grant P30CA013330. The Leica SP8 confocal microscope was purchased under the Shared Instrumentation Grant (SIG) 1S10OD023591-01 and the JEOL 1400 Plus transmission electron microscope, 1S10OD016214-01A1. O.M.I. was supported by the 2017 IBRO-ISN Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

P.M. and M.A. conceived the project. P.M., O.M.I., and A.A. designed and performed the in vivo experiment. J.B. performed ICP-MS measurements. H.C. performed RNA-seq analyses and prepared Fig. 6. F.P.M. and L.G. performed the AT-SEM studies. P.M. designed and performed the rest of the experiments, analyzed the data, developed analytical tools, and wrote the paper. A.B.B. and M.A. edited the manuscript and secured funding. All authors contributed to the final version of the manuscript.

Corresponding authors

Correspondence to Patricia Morcillo or Michael Aschner.

Ethics declarations

Ethics Approval

All animal experiments were performed according to the Institutional Animal Care and Use Committees of Albert Einstein College of Medicine and conformed to the National Institutes of Health Guidelines for use of animals in research.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

Supplemental Figure S1: Mn induces cytotoxicity in primary neuron culture in a dose- and time- dependent manner. Cell viability measured by MTT assay in primary neurons were treated with various concentrations of Mn (100, 500 and 1000 μM) for 1 h (green lines) and 24 h (pink lines). Values are normalized to the control and expressed as mean ± SD (n=5). Statistical significance was analyzed by one-way ANOVA and post-hoc Tukey test (p<0.05). Different lower-case letters indicate significant differences among dosages (control group contains a). Supplemental Figure S2: Mn exposure results in mitochondrial fragmentation in primary neurons. A) Representative confocal microscopy images showing mitochondrial morphology followed by mitochondrial morphological skeleton generated by Mitochondrial Network Analysis (MiNA) toolset in control and primary neurons exposed to 100 μM Mn for 1 h. In the representation of the skeleton, mitochondrial networks are represented in yellow and mitochondrial junction are represented in violet. Scale bars 5 μm. B-E) Quantification of number of individuals (B), networks (C), branches per network (D), or length of the branches (E) in control and Mn-exposed primary neuron culture (n=4 independent cultures with ≥ 15 neurons each). Results are expressed as mean ± SD. Statistical significance was analyzed by Student t-test (*p < 0.05; **p < 0.01; p < 0.01; ***p < 0.001, **** p < 0.0001). Supplemental Figure S3: Intraperitoneal Mn administration is accumulated in rat striatum and contributes to body weight changes: A) Intraperitoneal administration (ip) of MnCl2.4H2O (25 mg/kg) is accumulated in rat striatum measured by inductively coupled plasma mass spectrometry (ICP-MS). Bar represent Mn levels (mg/kg) in control and exposed striatum. Results are expressed as mean ± SD (n=6). B) Bars represent the body weight (g) at the beginning of the experiment (day 0) and after ip injection of vehicle (control) or Mn (day 16). Results are expressed as mean± SD (n=6). Statistical significance was analyzed by Student t-test (**p < 0. 01). Supplemental Figure S4: Analysis of morphological parameters of mitochondria from the neuropils and soma of striatum neurons. A-C) Frequency distribution of the area (A), perimeter (B) and circularity (C) of the mitochondria in the neuropils of striatum neurons from control and Mn-exposed groups (n=4). D-F) Frequency distribution of the area (D), perimeter (E) and circularity (F) of the mitochondria in the soma of striatum neurons from control and Mn-exposed groups (n=4). Supplemental Figure S5: Mitochondrial transport failure underlies Mn-induced neurotoxicity in vivo. Representative western blot of acetyl-K40-TUBA, KIF5B and DCTN1 in rat striatum exposed to Mn. TUBA and ACTB were used as a loading control for both control and Mn-exposed groups. (PDF 2020 kb)

ESM 2

(AVI 9384 kb)

ESM 3

(AVI 4742 kb)

ESM 4

(MP4 14542 kb)

ESM 5

(MP4 13024 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morcillo, P., Cordero, H., Ijomone, O.M. et al. Defective Mitochondrial Dynamics Underlie Manganese-Induced Neurotoxicity. Mol Neurobiol 58, 3270–3289 (2021). https://doi.org/10.1007/s12035-021-02341-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02341-w

Keywords

Navigation