Skip to main content

Advertisement

Log in

Estrogen Signaling in Alzheimer’s Disease: Molecular Insights and Therapeutic Targets for Alzheimer’s Dementia

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Estrogens play a crucial physiological function in the brain; however, debates exist concerning the role of estrogens in Alzheimer’s disease (AD). Women during pre-, peri-, or menopause periods are more susceptible for developing AD, suggesting the connection of sex factors and a decreased estrogen signaling in AD pathogenesis. Yet, the underlying mechanism of estrogen-mediated neuroprotection is unclarified and is complicated by the existence of estrogen-related factors. Consequently, a deeper analysis of estrogen receptor (ER) expression and estrogen-metabolizing enzymes could interpret the importance of estrogen in age-linked cognitive alterations. Previous studies propose that hormone replacement therapy may attenuate AD onset in postmenopausal women, demonstrating that estrogen signaling is important for the development and progression of AD. For example, ERα exerts neuroprotection against AD by maintaining intracellular signaling cascades and study reported reduced expression of ERα in hippocampal neurons of AD patients. Similarly, reduced expression of ERβ in female AD patients has been associated with abnormal function in mitochondria and improved markers of oxidative stress. In this review, we discuss the critical interaction between estrogen signaling and AD. Moreover, we highlight the potential of targeting estrogen-related signaling for therapeutic intervention in AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

ER:

Estrogen receptor

ERα:

Estrogen receptor alpha

ERβ:

Estrogen receptor beta

COMT:

Catechol-O-methyltransferase

ApoE:

Apolipoprotein E

Daxx:

Death domain-associated protein

NMDA:

N-methyl-D-aspartate

VDAC:

Voltage-dependent anion channel

IGF-1R:

Insulin-like growth factor I receptor

References

  1. Al Mamun A, Uddin MS, Kabir MT, et al (2020) Exploring the Promise of Targeting Ubiquitin-Proteasome System to Combat Alzheimer’s Disease. Neurotox Res 1–10. https://doi.org/10.1007/s12640-020-00185-1

    Article  CAS  PubMed  Google Scholar 

  2. Uddin MS, Al Mamun A, Asaduzzaman M et al (2018) Spectrum of disease and prescription pattern for outpatients with neurological disorders: an empirical pilot study in Bangladesh. Ann Neurosci 25:25–37. https://doi.org/10.1159/000481812

    Article  PubMed  Google Scholar 

  3. Rahman MA, Rahman MR, Zaman T, Uddin MS, Islam R, Abdel-Daim MM, Rhim H (2020) Emerging potential of naturally occurring autophagy modulator against neurodegeneration. Curr Pharm Des 26: In Press:772–779. https://doi.org/10.2174/1381612826666200107142541

    Article  CAS  PubMed  Google Scholar 

  4. Garre-Olmo J (2018) Epidemiology of Alzheimer’s disease and other dementias. Rev Neurol 66:377–386

    CAS  PubMed  Google Scholar 

  5. Uddin MS, Mamun AA, Takeda S et al (2019) Analyzing the chance of developing dementia among geriatric people: a cross-sectional pilot study in Bangladesh. Psychogeriatrics 19:87–94. https://doi.org/10.1111/psyg.12368

    Article  PubMed  Google Scholar 

  6. Gaugler J, James B, Johnson T et al (2016) 2016 Alzheimer’s disease facts and figures. Alzheimers Dement 12:459–509. https://doi.org/10.1016/j.jalz.2016.03.001

    Article  Google Scholar 

  7. Kabir MT, Uddin MS, Begum MM et al (2019) Cholinesterase inhibitors for Alzheimer’s disease: multitargeting strategy based on anti-Alzheimer’s drugs repositioning. Curr Pharm Des 25:3519–3535. https://doi.org/10.2174/1381612825666191008103141

    Article  CAS  PubMed  Google Scholar 

  8. Mamun AA, Uddin MS, Mathew B, Ashraf GM (2020) Toxic Tau: Structural Origins of Tau Aggregation in Alzheimer’s Disease. Neural Regen Res 15:1417–1420. https://doi.org/10.4103/1673-5374.274329

    Article  PubMed  PubMed Central  Google Scholar 

  9. Uddin MS, Kabir MT, Niaz K, et al (2020) Molecular Insight into the Therapeutic Promise of Flavonoids against Alzheimer’s Disease. Mol 25:1267. https://doi.org/10.3390/MOLECULES25061267

    Article  CAS  PubMed Central  Google Scholar 

  10. Mendiola-Precoma J, Berumen LC, Padilla K, Garcia-Alcocer G (2016) Therapies for prevention and treatment of Alzheimer’s disease. Biomed Res Int 2016:1–17

    Article  Google Scholar 

  11. Uddin MS, Mamun AA, Labu ZK et al (2019) Autophagic dysfunction in Alzheimer’s disease: cellular and molecular mechanistic approaches to halt Alzheimer’s pathogenesis. J Cell Physiol 234:8094–8112. https://doi.org/10.1002/jcp.27588

    Article  CAS  PubMed  Google Scholar 

  12. Zhao L, Woody SK, Chhibber A (2015) Estrogen receptor β in Alzheimer’s disease: from mechanisms to therapeutics. Ageing Res Rev 24:178–190. https://doi.org/10.1016/j.arr.2015.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Khosla S, Melton LJ, Atkinson EJ, O’Fallon WM (2001) Relationship of serum sex steroid levels to longitudinal changes in bone density in young versus elderly men. J Clin Endocrinol Metab 86:3555–3561. https://doi.org/10.1210/jcem.86.8.7736

    Article  CAS  PubMed  Google Scholar 

  14. Tang MX, Jacobs D, Stern Y et al (1996) Effect of oestrogen during menopause on risk and age at onset of Alzheimer’s disease. Lancet 348:429–432. https://doi.org/10.1016/S0140-6736(96)03356-9

    Article  CAS  PubMed  Google Scholar 

  15. Hojo Y, Murakami G, Mukai H et al (2008) Estrogen synthesis in the brain-role in synaptic plasticity and memory. Mol Cell Endocrinol 290(1–2):31–43. https://doi.org/10.1016/j.mce.2008.04.017

    Article  CAS  PubMed  Google Scholar 

  16. Wharton W, Baker LD, Gleason CE et al (2011) Short-term hormone therapy with transdermal estradiol improves cognition for postmenopausal women with Alzheimer’s disease: results of a randomized controlled trial. J Alzheimers Dis 26:495–505. https://doi.org/10.3233/JAD-2011-110341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Foster TC (2012) Role of estrogen receptor alpha and beta expression and signaling on cognitive function during aging. Hippocampus 22:656–669. https://doi.org/10.1002/hipo.20935

    Article  CAS  PubMed  Google Scholar 

  18. Barnes LL, Wilson RS, Bienias JL, Schneider JA, Evans DA, Bennett DA (2005) Sex differences in the clinical manifestations of Alzheimer disease pathology. Arch Gen Psychiatry 62:685–691. https://doi.org/10.1001/archpsyc.62.6.685

    Article  PubMed  Google Scholar 

  19. Daniel JM, Bohacek J (2010) The critical period hypothesis of estrogen effects on cognition: insights from basic research. Biochim Biophys Acta, Gen Subj 1800(10):1068–1076

    Article  CAS  Google Scholar 

  20. Henderson VW (2014) Alzheimer’s disease: review of hormone therapy trials and implications for treatment and prevention after menopause. J Steroid Biochem Mol Biol 142:99–106

    Article  CAS  PubMed  Google Scholar 

  21. Xu H, Gouras GK, Greenfield JP et al (1998) Estrogen reduces neuronal generation of Alzheimer β-amyloid peptides. Nat Med 4(4):447–451. https://doi.org/10.1038/nm0498-447

    Article  CAS  PubMed  Google Scholar 

  22. Pompili A, Arnone B, Gasbarri A (2012) Estrogens and memory in physiological and neuropathological conditions. Psychoneuroendocrinology 37(9):1379–1396

    Article  CAS  PubMed  Google Scholar 

  23. Correia SC, Santos RX, Cardoso S et al (2010) Effects of estrogen in the brain: is it a neuroprotective agent in Alzheimers disease? Curr Aging Sci 3:113–126. https://doi.org/10.2174/1874609811003020113

    Article  PubMed  Google Scholar 

  24. Lee JH, Jiang Y, Han DH et al (2014) Targeting estrogen receptors for the treatment of Alzheimer’s disease. Mol Neurobiol 49(1):39–49

    Article  CAS  PubMed  Google Scholar 

  25. Goodenough S, Schleusner D, Pietrzik C et al (2005) Glycogen synthase kinase 3β links neuroprotection by 17β-estradiol to key Alzheimer processes. Neuroscience 132:581–589. https://doi.org/10.1016/j.neuroscience.2004.12.029

    Article  CAS  PubMed  Google Scholar 

  26. Zhang Q-G, Wang R, Khan M et al (2008) Role of Dickkopf-1, an antagonist of the Wnt/ -catenin signaling pathway, in estrogen-induced neuroprotection and attenuation of tau phosphorylation. J Neurosci 30(2):239–258. https://doi.org/10.1523/JNEUROSCI.2752-08.2008

    Article  CAS  Google Scholar 

  27. Perlmann T, Evans RM (1997) Nuclear receptors in sicily: all in the famiglia. Cell 90:391–397

    Article  CAS  PubMed  Google Scholar 

  28. Katzenellenbogen BS (1996) Estrogen receptors: bioactivities and interactions with cell signaling pathways1. Biol Reprod 54:287–293. https://doi.org/10.1095/biolreprod54.2.287

    Article  CAS  PubMed  Google Scholar 

  29. Liu X, Zhu P, Sham KWY et al (2009) Identification of a membrane estrogen receptor in zebrafish with homology to mammalian GPER and its high expression in early germ cells of the testis 1. Biol Reprod 80:1253–1261. https://doi.org/10.1095/biolreprod.108.070250

    Article  CAS  PubMed  Google Scholar 

  30. Cui J, Shen Y, Li R (2013) Estrogen synthesis and signaling pathways during aging: from periphery to brain. Trends Mol Med 19:197–209. https://doi.org/10.1016/J.MOLMED.2012.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pérez SE, Chen E-Y, Mufson EJ (2003) Distribution of estrogen receptor alpha and beta immunoreactive profiles in the postnatal rat brain. Dev Brain Res 145:117–139. https://doi.org/10.1016/S0165-3806(03)00223-2

    Article  CAS  Google Scholar 

  32. Paech K, Webb P, Kuiper GGJM et al (1997) Differential ligand activation of estrogen receptors ERα and ERrβ at AP1 sites. Science 277(5331):1508–1510. https://doi.org/10.1126/science.277.5331.1508

    Article  CAS  PubMed  Google Scholar 

  33. McInerney EM, Weis KE, Sun J et al (1998) Transcription activation by the human estrogen receptor subtypeβ (ERβ) studied with ERβ and ERα receptor chimeras 1. Endocrinology 139:4513–4522. https://doi.org/10.1210/endo.139.11.6298

    Article  CAS  PubMed  Google Scholar 

  34. Cowley SM, Parker MG (1999) A comparison of transcriptional activation by ERα and ERβ. J Steroid Biochem Mol Biol 69:165–175. https://doi.org/10.1016/S0960-0760(99)00055-2

    Article  CAS  PubMed  Google Scholar 

  35. Yi P, Driscoll MD, Huang J et al (2002) The effects of estrogen-responsive element- and ligand-induced structural changes on the recruitment of cofactors and transcriptional responses by ERα and ERβ. Mol Endocrinol 16:674–693. https://doi.org/10.1210/mend.16.4.0810

    Article  CAS  PubMed  Google Scholar 

  36. Zhang Q, Han D, Wang R et al (2011) C terminus of Hsc70-interacting protein (CHIP)-mediated degradation of hippocampal estrogen receptor-alpha and the critical period hypothesis of estrogen neuroprotection. Proc Natl Acad Sci U S A 108:E617–E624. https://doi.org/10.1073/pnas.1104391108

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhang Q-G, Raz L, Wang R et al (2009) Neurobiology of disease estrogen attenuates ischemic oxidative damage via an estrogen receptor-mediated inhibition of NADPH oxidase activation. J Neurosci 29(44):13823–13836. https://doi.org/10.1523/JNEUROSCI.3574-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Qu N, Wang L, Liu Z-C et al (2013) Oestrogen receptor α agonist improved long-term ovariectomy-induced spatial cognition deficit in young rats. Int J Neuropsychopharmacol 16:1071–1082. https://doi.org/10.1017/S1461145712000958

    Article  CAS  PubMed  Google Scholar 

  39. Corbo RM, Gambina G, Ruggeri M, Scacchi R (2006) Association of estrogen receptor (ESR1) Pvu II and Xba I polymorphisms with sporadic Alzheimer’s disease and their effect on apolipoprotein E concentrations. Dement Geriatr Cogn Disord 22:67–72. https://doi.org/10.1159/000093315

    Article  CAS  PubMed  Google Scholar 

  40. Ji Y, Urakami K, Wada-Isoe K et al (2000) Estrogen receptor gene polymorphisms in patients with Alzheimer’s disease, vascular dementia and alcohol-associated dementia. Dement Geriatr Cogn Disord 11(3):119–122

    Article  CAS  PubMed  Google Scholar 

  41. Olsen L, Rasmussen HB, Hansen T et al (2006) Estrogen receptor alpha and risk for cognitive impairment in postmenopausal women. Psychiatr Genet 16(2):85–88

    Article  PubMed  Google Scholar 

  42. Carter CL, Resnick EM, Mallampalli M, Kalbarczyk A (2012) Sex and gender differences in Alzheimer’s disease: recommendations for future research. J Women's Health 21:1018–1023. https://doi.org/10.1089/jwh.2012.3789

    Article  Google Scholar 

  43. Regitz-Zagrosek V, Seeland U (2013) Sex and gender differences in clinical medicine. Springer, Berlin, Heidelberg, pp. 3–22

    Book  Google Scholar 

  44. Brookmeyer R, Evans DA, Hebert L et al (2011) National estimates of the prevalence of Alzheimer’s disease in the United States. Alzheimers Dement 7:61–73. https://doi.org/10.1016/J.JALZ.2010.11.007

    Article  PubMed  PubMed Central  Google Scholar 

  45. Alzheimer’s A (2013) 2013 Alzheimer’s disease facts and figures. Alzheimers Dement 9:208–245. https://doi.org/10.1016/j.jalz.2013.02.003

    Article  Google Scholar 

  46. Hall JR, Vo HT, Johnson LA et al (2012) Boston naming test: gender differences in older adults with and without Alzheimer’s dementia. Psychology 03:485–488. https://doi.org/10.4236/psych.2012.36068

    Article  Google Scholar 

  47. Chapman RM, Mapstone M, Gardner MN et al (2011) Women have farther to fall: gender differences between normal elderly and Alzheimer’s disease in verbal memory engender better detection of Alzheimer’s disease in women. J Int Neuropsychol Soc 17:654–662. https://doi.org/10.1017/S1355617711000452

    Article  PubMed  PubMed Central  Google Scholar 

  48. Irvine K, Laws KR, Gale TM, Kondel TK (2012) Greater cognitive deterioration in women than men with Alzheimer’s disease: a meta analysis. J Clin Exp Neuropsychol 34:989–998. https://doi.org/10.1080/13803395.2012.712676

    Article  PubMed  Google Scholar 

  49. Berti V, Mosconi L, Glodzik L et al (2011) Structural brain changes in normal individuals with a maternal history of Alzheimer’s. Neurobiol Aging 32:2325.e17–2325.e26. https://doi.org/10.1016/J.NEUROBIOLAGING.2011.01.001

    Article  Google Scholar 

  50. Honea RA, Swerdlow RH, Vidoni ED, Burns JM (2011) Progressive regional atrophy in normal adults with a maternal history of Alzheimer disease. Neurology 76:822–829. https://doi.org/10.1212/WNL.0b013e31820e7b74

    Article  PubMed  PubMed Central  Google Scholar 

  51. Mosconi L, Berti V, Swerdlow RH et al (2010) Maternal transmission of Alzheimer’s disease: prodromal metabolic phenotype and the search for genes. Hum Genomics 4:170–193. https://doi.org/10.1186/1479-7364-4-3-170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Uddin MS, Devesh T, Mamun A Al, et al (2020) Circadian and Sleep Dysfunction in Alzheimer’s Disease. Ageing Res Rev 60:101046. https://doi.org/10.1016/J.ARR.2020.101046

    Article  PubMed  Google Scholar 

  53. Safieh M, Korczyn AD, Michaelson DM (2019) ApoE4: an emerging therapeutic target for Alzheimer’s disease. BMC Med 17:1–17. https://doi.org/10.1186/s12916-019-1299-4

    Article  Google Scholar 

  54. Uddin MS, Kabir MT, Al Mamun A et al (2019) APOE and Alzheimer’s disease: evidence mounts that targeting APOE4 may combat Alzheimer’s pathogenesis. Mol Neurobiol 56:2450–2465. https://doi.org/10.1007/s12035-018-1237-z

    Article  CAS  PubMed  Google Scholar 

  55. Farrer LA, Cupples LA, Haines JL et al (1997) Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. JAMA 278:1349. https://doi.org/10.1001/jama.1997.03550160069041

    Article  CAS  PubMed  Google Scholar 

  56. Altmann A, Tian L, Henderson VW et al (2014) Sex modifies the APOE-related risk of developing Alzheimer disease. Ann Neurol 75:563–573. https://doi.org/10.1002/ana.24135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ungar L, Altmann A, Greicius MD (2014) Apolipoprotein E, gender, and Alzheimer’s disease: an overlooked, but potent and promising interaction. Brain Imaging Behav 8:262–273. https://doi.org/10.1007/s11682-013-9272-x

    Article  PubMed  PubMed Central  Google Scholar 

  58. Johnson JK, McCleary R, Oshita MH, Cotman CW (1998) Initiation and propagation stages of β-amyloid are associated with distinctive apolipoprotein E, age, and gender profiles. Brain Res 798:18–24. https://doi.org/10.1016/S0006-8993(98)00363-1

    Article  CAS  PubMed  Google Scholar 

  59. Shatwan IM, Weech M, Jackson KG et al (2017) Apolipoprotein E gene polymorphism modifies fasting total cholesterol concentrations in response to replacement of dietary saturated with monounsaturated fatty acids in adults at moderate cardiovascular disease risk. Lipids Health Dis 16:222. https://doi.org/10.1186/s12944-017-0606-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mielke MM, Leoutsakos J-M, Corcoran CD et al (2012) Effects of Food and Drug Administration-approved medications for Alzheimer’s disease on clinical progression. Alzheimers Dement 8:180–187. https://doi.org/10.1016/J.JALZ.2011.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chang Y-L, Fennema-Notestine C, Holland D et al (2014) APOE interacts with age to modify rate of decline in cognitive and brain changes in Alzheimer’s disease. Alzheimers Dement 10:336–348. https://doi.org/10.1016/J.JALZ.2013.05.1763

    Article  PubMed  Google Scholar 

  62. Lan YL, Zhao J, Li S (2014) Update on the neuroprotective effect of estrogen receptor alpha against Alzheimer’s disease. J Alzheimers Dis 43:1137–1148

    Article  Google Scholar 

  63. Zárate S, Stevnsner T, Gredilla R (2017) Role of estrogen and other sex hormones in brain aging. Neuroprotection and DNA repair. Front Aging Neurosci 9:430

    Article  PubMed  PubMed Central  Google Scholar 

  64. Bae YH, Hwang JY, Kim YH, Koh JY (2000) Anti-oxidative neuroprotection by estrogens in mouse cortical cultures. J Korean Med Sci 15(3):327–336. https://doi.org/10.3346/jkms.2000.15.3.327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Prokai L, Prokai-Tatrai K, Perjési P, Simpkins JW (2005) Mechanistic insights into the direct antioxidant effects of estrogens. Drug Dev Res 66:118–125. https://doi.org/10.1002/ddr.20050

    Article  CAS  Google Scholar 

  66. Brinton RD, Chen S, Montoya M et al (2000) The estrogen replacement therapy of the Women’s Health Initiative promotes the cellular mechanisms of memory and neuronal survival in neurons vulnerable to Alzheimer’s disease. Maturitas 34:S35–S52. https://doi.org/10.1016/S0378-5122(00)00107-9

    Article  CAS  PubMed  Google Scholar 

  67. Goodman Y, Bruce AJ, Cheng B, Mattson MP (2002) Estrogens attenuate and corticosterone exacerbates excitotoxicity, oxidative injury, and amyloid β-peptide toxicity in hippocampal neurons. J Neurochem 66:1836–1844. https://doi.org/10.1046/j.1471-4159.1996.66051836.x

    Article  Google Scholar 

  68. Gridley KE, Green PS, Simpkins JW (1997) Low concentrations of estradiol reduce β-amyloid (25–35)-induced toxicity, lipid peroxidation and glucose utilization in human SK-N-SH neuroblastoma cells. Brain Res 778:158–165. https://doi.org/10.1016/S0006-8993(97)01056-1

    Article  CAS  PubMed  Google Scholar 

  69. Behl C, Skutella T, Lezoualc’h F et al (1997) Neuroprotection against oxidative stress by estrogens: structure-activity relationship. Mol Pharmacol 51:535–541. https://doi.org/10.1124/MOL.51.4.535

    Article  CAS  PubMed  Google Scholar 

  70. Singer CA, Rogers KL, Strickland TM, Dorsa DM (1996) Estrogen protects primary cortical neurons from glutamate toxicity. Neurosci Lett 212:13–16. https://doi.org/10.1016/0304-3940(96)12760-9

    Article  CAS  PubMed  Google Scholar 

  71. THOMAS T, RHODIN J (2000) Vascular actions of estrogen and Alzheimer’s disease. Ann N Y Acad Sci 903:501–509. https://doi.org/10.1111/j.1749-6632.2000.tb06406.x

    Article  CAS  PubMed  Google Scholar 

  72. Jaffe AB, Toran-Allerand CD, Greengard P, Gandy SE (1994) Estrogen regulates metabolism of Alzheimer amyloid β precursor protein. J Biol Chem 269:13065–13068. https://doi.org/10.1094/Phyto-79-861

    Article  CAS  PubMed  Google Scholar 

  73. Vincent B, Smith JD (2000) Effect of estradiol on neuronal Swedish-mutated β-amyloid precursor protein metabolism: reversal by astrocytic cells. Biochem Biophys Res Commun 271:82–85. https://doi.org/10.1006/BBRC.2000.2581

    Article  CAS  PubMed  Google Scholar 

  74. Leanza G (1998) Chronic elevation of amyloid precursor protein expression in the neocortex and hippocampus of rats with selective cholinergic lesions. Neurosci Lett 257:53–56. https://doi.org/10.1016/S0304-3940(98)00744-7

    Article  CAS  PubMed  Google Scholar 

  75. Wong TP, Debeir T, Duff K, Cuello AC (1999) Reorganization of cholinergic terminals in the cerebral cortex and hippocampus in transgenic mice carrying mutated presenilin-1 and amyloid precursor protein transgenes. J Neurosci 19:2706–2716. https://doi.org/10.1523/JNEUROSCI.19-07-02706.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bronfman FC, Moechars D, Van Leuven F (2000) Acetylcholinesterase-positive fiber deafferentation and cell shrinkage in the septohippocampal pathway of aged amyloid precursor protein London mutant transgenic mice. Neurobiol Dis 7:152–168. https://doi.org/10.1006/NBDI.2000.0283

    Article  CAS  PubMed  Google Scholar 

  77. Granholm A-C (2000) Oestrogen and nerve growth factor – neuroprotection and repair in Alzheimer’s disease. Expert Opin Investig Drugs 9:685–694. https://doi.org/10.1517/13543784.9.4.685

    Article  CAS  PubMed  Google Scholar 

  78. Keller JN, Germeyer A, Begley JG, Mattson MP (1997) 17?-estradiol attenuates oxidative impairment of synaptic Na+/K+-ATPase activity, glucose transport, and glutamate transport induced by amyloid ?-peptide and iron. J Neurosci Res 50:522–530. https://doi.org/10.1002/(SICI)1097-4547(19971115)50:4<522::AID-JNR3>3.0.CO;2-G

    Article  CAS  PubMed  Google Scholar 

  79. Eberling JL, Wu C, Haan MN, Mungas D, Buonocore MJW (2001) Gender differences in age-related hippocampal atrophy: the role of estrogen. In: Programs and Abstracts From the 31st Annual Meeting of the Society for Neuroscience San Diego, Calif Washington, DC Society for Neuroscience; Program 192.2. DC Society for Neuroscience, San Diego

  80. Fillit HM (2002) The role of hormone replacement therapy in the prevention of Alzheimer disease. Arch Intern Med 162:1934–1942

    Article  CAS  PubMed  Google Scholar 

  81. Nilsen J, Diaz Brinton R (2004) Mitochondria as therapeutic targets of estrogen action in the central nervous system. Curr Drug Targets CNS Neurol Disord 3:297–313

    Article  CAS  PubMed  Google Scholar 

  82. Zhao L, Brinton RD (2007) Estrogen receptor α and β differentially regulate intracellular Ca2+ dynamics leading to ERK phosphorylation and estrogen neuroprotection in hippocampal neurons. Brain Res 1172:48–59. https://doi.org/10.1016/J.BRAINRES.2007.06.092

    Article  CAS  PubMed  Google Scholar 

  83. Wu T-W, Wang JM, Chen S, Brinton RD (2005) 17β-estradiol induced Ca2+ influx via L-type calcium channels activates the Src/ERK/cyclic-AMP response element binding protein signal pathway and BCL-2 expression in rat hippocampal neurons: a potential initiation mechanism for estrogen-induced neuroprot. Neuroscience 135:59–72. https://doi.org/10.1016/J.NEUROSCIENCE.2004.12.027

    Article  CAS  PubMed  Google Scholar 

  84. Li X-Z, Sui C-Y, Chen Q et al (2015) Upregulation of cell surface estrogen receptor alpha is associated with the mitogen-activated protein kinase/extracellular signal-regulated kinase activity and promotes autophagy maturation. Int J Clin Exp Pathol 8:8832–8841

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Muromoto R (2012) Death domain-associated protein (DAXX)-mediated regulation of transcription and cell death. Yakugaku Zasshi 132:979–984

    Article  CAS  PubMed  Google Scholar 

  86. Lee Y-S, Dayma Y, Park M-Y et al (2013) Daxx is a key downstream component of receptor interacting protein kinase 3 mediating retinal ischemic cell death. FEBS Lett 587:266–271. https://doi.org/10.1016/j.febslet.2012.12.004

    Article  CAS  PubMed  Google Scholar 

  87. Akterin S, Cowburn RF, Miranda-Vizuete A et al (2006) Involvement of glutaredoxin-1 and thioredoxin-1 in β-amyloid toxicity and Alzheimer’s disease. Cell Death Differ 13:1454–1465. https://doi.org/10.1038/sj.cdd.4401818

    Article  CAS  PubMed  Google Scholar 

  88. Mateos L, Persson T, Kathozi S et al (2012) Estrogen protects against amyloid-β toxicity by estrogen receptor α-mediated inhibition of Daxx translocation. Neurosci Lett 506:245–250. https://doi.org/10.1016/J.NEULET.2011.11.016

    Article  CAS  PubMed  Google Scholar 

  89. Holmgren A (2000) Antioxidant function of thioredoxin and glutaredoxin systems. Antioxid Redox Signal 2:811–820. https://doi.org/10.1089/ars.2000.2.4-811

    Article  CAS  PubMed  Google Scholar 

  90. Jelks KB, Wylie R, Floyd CL et al (2007) Development/plasticity/repair estradiol targets synaptic proteins to induce glutamatergic synapse formation in cultured hippocampal neurons: critical role of estrogen receptor. J Neurosci 27(26):6903–6913. https://doi.org/10.1523/JNEUROSCI.0909-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Xia Y, Xing JZ, Krukoff TL (2009) Neuroprotective effects of R,R-tetrahydrochrysene against glutamate-induced cell death through anti-excitotoxic and antioxidant actions involving estrogen receptor–dependent and –independent pathways. Neuroscience 162:292–306. https://doi.org/10.1016/J.NEUROSCIENCE.2009.04.068

    Article  CAS  PubMed  Google Scholar 

  92. Bryant DN, Dorsa DM (2010) Roles of estrogen receptors alpha and beta in sexually dimorphic neuroprotection against glutamate toxicity. Neuroscience 170:1261–1269. https://doi.org/10.1016/J.NEUROSCIENCE.2010.08.019

    Article  CAS  PubMed  Google Scholar 

  93. Li S, Jin M, Koeglsperger T et al (2011) Neurobiology of disease soluble a oligomers inhibit long-term potentiation through a mechanism involving excessive activation of extrasynaptic NR2B-containing NMDA receptors. J Neurosci 31(18):6627–6638. https://doi.org/10.1523/JNEUROSCI.0203-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Palop JJ, Mucke L (2010) Amyloid-β induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks. Nat Neurosci 13(7):812–818. https://doi.org/10.1038/nn.2583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hardingham GE, Bading H (2010) Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 11:682–696. https://doi.org/10.1038/nrn2911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kabir MT, Abu Sufian M, Uddin MS et al (2019) NMDA receptor antagonists: repositioning of memantine as multitargeting agent for Alzheimer’s therapy. Curr Pharm Des 25:3506–3518. https://doi.org/10.2174/1381612825666191011102444

    Article  CAS  PubMed  Google Scholar 

  97. Okamoto S-I, Pouladi MA, Talantova M et al (2009) Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and neurotoxicity of mutant huntingtin. Nat Med 15(12):1407–1413. https://doi.org/10.1038/nm.2056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Talantova M, Sanz-Blasco S, Zhang X et al (2013) Aβ induces astrocytic glutamate release, extrasynaptic NMDA receptor activation, and synaptic loss. Proc Natl Acad Sci 110:E2518–E2527. https://doi.org/10.1073/pnas.1306832110

    Article  PubMed  PubMed Central  Google Scholar 

  99. Han S-H, Mook-Jung I (2014) Diverse molecular targets for therapeutic strategies in Alzheimer’s disease. J Korean Med Sci 29:893. https://doi.org/10.3346/jkms.2014.29.7.893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Morinaga A, Hirohata M, Ono K, Yamada M (2007) Estrogen has anti-amyloidogenic effects on Alzheimer’s β-amyloid fibrils in vitro. Biochem Biophys Res Commun 359:697–702. https://doi.org/10.1016/J.BBRC.2007.05.158

    Article  CAS  PubMed  Google Scholar 

  101. Yamin G, Ono K, Inayathullah M, Teplow D (2008) Amyloid β -protein assembly as a therapeutic target of Alzheimers disease. Curr Pharm Des 14:3231–3246. https://doi.org/10.2174/138161208786404137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Meitzen J, Mermelstein PG (2011) Estrogen receptors stimulate brain region specific metabotropic glutamate receptors to rapidly initiate signal transduction pathways. J Chem Neuroanat 42:236–241. https://doi.org/10.1016/J.JCHEMNEU.2011.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lee E, Sidoryk-Wêgrzynowicz M, Wang N et al (2012) GPR30 regulates glutamate transporter GLT-1 expression in rat primary astrocytes. J Biol Chem 287(32):26817–26828. https://doi.org/10.1074/jbc.M112.341867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Marin R, Ramírez CM, González M et al (2007) Voltage-dependent anion channel (VDAC) participates in amyloid beta-induced toxicity and interacts with plasma membrane estrogen receptor α in septal and hippocampal neurons voltage-dependent anion channel (VDAC) participates in amyloid beta-induced toxic. Mol Membr Biol 24(2):148–160. https://doi.org/10.1080/09687860601055559

    Article  CAS  PubMed  Google Scholar 

  105. Elinder F, Akanda N, Tofighi R et al (2005) Opening of plasma membrane voltage-dependent anion channels (VDAC) precedes caspase activation in neuronal apoptosis induced by toxic stimuli. Cell Death Differ 12:1134–1140. https://doi.org/10.1038/sj.cdd.4401646

    Article  CAS  PubMed  Google Scholar 

  106. Herrera JL, Diaz M, Hernández-Fernaud JR et al (2011) Voltage-dependent anion channel as a resident protein of lipid rafts: post-transductional regulation by estrogens and involvement in neuronal preservation against Alzheimer’s disease. J Neurochem 116:820–827. https://doi.org/10.1111/j.1471-4159.2010.06987.x

    Article  CAS  PubMed  Google Scholar 

  107. Kamanga-Sollo E, White ME, Hathaway MR et al (2008) Roles of IGF-I and the estrogen, androgen and IGF-I receptors in estradiol-17β- and trenbolone acetate-stimulated proliferation of cultured bovine satellite cells. Domest Anim Endocrinol 35:88–97. https://doi.org/10.1016/J.DOMANIEND.2008.02.003

    Article  CAS  PubMed  Google Scholar 

  108. Kamanga-Sollo E, White ME, Chung KY et al (2008) Potential role of G-protein-coupled receptor 30 (GPR30) in estradiol-17β-stimulated IGF-I mRNA expression in bovine satellite cell cultures. Domest Anim Endocrinol 35:254–262. https://doi.org/10.1016/J.DOMANIEND.2008.06.001

    Article  CAS  PubMed  Google Scholar 

  109. Mendez P, Azcoitia I, Garcia-Segura LM (2003) Estrogen receptor alpha forms estrogen-dependent multimolecular complexes with insulin-like growth factor receptor and phosphatidylinositol 3-kinase in the adult rat brain. Mol Brain Res 112:170–176. https://doi.org/10.1016/S0169-328X(03)00088-3

    Article  CAS  PubMed  Google Scholar 

  110. Kamanga-Sollo E, White ME, Weber WJ, Dayton WR (2013) Role of estrogen receptor-α (ESR1) and the type 1 insulin-like growth factor receptor (IGFR1) in estradiol-stimulated proliferation of cultured bovine satellite cells. Domest Anim Endocrinol 44:36–45. https://doi.org/10.1016/J.DOMANIEND.2012.08.002

    Article  CAS  PubMed  Google Scholar 

  111. Chen W-F, Zhou L-P, Chen L et al (2013) Involvement of IGF-I receptor and estrogen receptor pathways in the protective effects of ginsenoside Rg1 against Aβ25–35-induced toxicity in PC12 cells. Neurochem Int 62:1065–1071. https://doi.org/10.1016/J.NEUINT.2013.03.018

    Article  CAS  PubMed  Google Scholar 

  112. Wei Z, Mousseau DD, Richardson JS et al (2003) Atypical antipsychotics attenuate neurotoxicity of β-amyloid(25-35) by modulating Bax and Bcl-XL/SExpression and localization. J Neurosci Res 74(6):942–947. https://doi.org/10.1002/jnr.10832

    Article  CAS  PubMed  Google Scholar 

  113. Long J, He P, Shen Y, Li R (2012) New evidence of mitochondria dysfunction in the female Alzheimer’s disease brain: deficiency of estrogen receptor-β. J Alzheimers Dis 30:545–558. https://doi.org/10.3233/JAD-2012-120283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Jayachandran M, Preston CC, Hunter LW et al (2010) Loss of estrogen receptor β decreases mitochondrial energetic potential and increases thrombogenicity of platelets in aged female mice. Age (Omaha) 32:109–121. https://doi.org/10.1007/s11357-009-9119-y

    Article  CAS  Google Scholar 

  115. Flynn JM, Dimitrijevich SD, Younes M et al (2008) Role of wild-type estrogen receptor-β in mitochondrial cytoprotection of cultured normal male and female human lens epithelial cells. Am J Physiol Endocrinol Metab 295:E637–E647. https://doi.org/10.1152/ajpendo.90407.2008

    Article  CAS  PubMed  Google Scholar 

  116. Reddy PH, Manczak M, Mao P et al (2010) Amyloid-β and mitochondria in aging and Alzheimer’s disease: Implications for synaptic damage and cognitive decline. J Alzheimers Dis 20:S499–S512. https://doi.org/10.3233/JAD-2010-100504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Goldsbury C, Whiteman IT, Jeong EV, Lim Y-A (2008) Oxidative stress increases levels of endogenous amyloid-β peptides secreted from primary chick brain neurons. Aging Cell 7:771–775. https://doi.org/10.1111/j.1474-9726.2008.00423.x

    Article  CAS  PubMed  Google Scholar 

  118. Wang L, Andersson S, Warner M, Gustafsson J-Å (2001) Morphological abnormalities in the brains of estrogen receptor knockout mice. Proc Natl Acad Sci U S A 98(5):2792–2796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhang QH, Huang YH, Hu YZ et al (2004) Disruption of estrogen receptor β in mice brain results in pathological alterations resembling Alzheimer disease. Acta Pharmacol Sin 25(4):452–457

    Article  CAS  PubMed  Google Scholar 

  120. Wang H, Si L, Li X et al (2012) Overexpression of estrogen receptor beta alleviates the toxic effects of beta-amyloid protein on PC12 cells via non-hormonal ligands. Neural Regen Res 7:1095–1100. https://doi.org/10.3969/j.issn.1673-5374.2012.14.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Rickle A, Bogdanovic N, Volkman I et al (2004) Akt activity in Alzheimer’s disease and other neurodegenerative disorders. Neuroreport 15:955–959

    Article  CAS  PubMed  Google Scholar 

  122. Honda K, Sawada H, Kihara T et al (2000) Phosphatidylinositol 3-kinase mediates neuroprotection by estrogen in cultured cortical neurons. J Neurosci Res 60:321–327. https://doi.org/10.1002/(SICI)1097-4547(20000501)60:3<321::AID-JNR6>3.0.CO;2-T

    Article  CAS  PubMed  Google Scholar 

  123. Zhang L, Rubinow DR, Xaing G et al (2001) Estrogen protects against beta-amyloid-induced neurotoxicity in rat hippocampal neurons by activation of Akt. Neuroreport 12:1919–1923

    Article  CAS  PubMed  Google Scholar 

  124. Zhang G, Yanamala N, Lathrop KL et al (2010) Ligand-independent antiapoptotic function of estrogen receptor-β in lung cancer cells. Mol Endocrinol 24:1737–1747. https://doi.org/10.1210/me.2010-0125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Srivastava RA, Srivastava N, Averna M et al (1997) Estrogen up-regulates apolipoprotein E (ApoE) gene expression by increasing ApoE mRNA in the translating pool via the estrogen receptor alpha-mediated pathway. J Biol Chem 272:33360–33366. https://doi.org/10.1074/JBC.272.52.33360

    Article  CAS  PubMed  Google Scholar 

  126. Stone DJ, Rozovsky I, Morgan TE et al (1998) Increased synaptic sprouting in response to estrogen via an apolipoprotein E-dependent mechanism: implications for Alzheimer’s disease. J Neurosci 18(9):3180–3185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wang JM, Irwin RW, Brinton RD (2006) Activation of estrogen receptor α increases and estrogen receptor β decreases apolipoprotein E expression in hippocampus in vitro and in vivo. Proc Natl Acad Sci U S A 103:16983–16988. https://doi.org/10.1073/pnas.0608128103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Chhibber A, Zhao L (2017) ERβ and ApoE isoforms interact to regulate BDNF–5-HT2A signaling and synaptic function in the female brain. Alzheimers Res Ther 9:79. https://doi.org/10.1186/s13195-017-0305-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Fernández-Martínez M, Martín XE, Martín EB et al (2013) Oestrogen receptor polymorphisms are an associated risk factor for mild cognitive impairment and Alzheimer disease in women APOE ε4 carriers: a case-control study. BMJ Open 3:e003200. https://doi.org/10.1136/bmjopen-2013-003200

    Article  PubMed  PubMed Central  Google Scholar 

  130. Wang PN, Liu HC, Liu TY et al (2005) Estrogen-metabolizing gene COMT polymorphism synergistic APOE epsilon4 allele increases the risk of Alzheimer disease. Dement Geriatr Cogn Disord 19:120–125. https://doi.org/10.1159/000082663

    Article  CAS  PubMed  Google Scholar 

  131. Ji Y, Shi Z, Liu M et al (2014) Association between the COMT Val158Met genotype and Alzheimer’s disease in the Han Chinese population. Dement Geriatr Cogn Dis Extra 4:14–21. https://doi.org/10.1159/000357161

    Article  PubMed  PubMed Central  Google Scholar 

  132. Martínez M, Martín X, Alcelay L et al (2009) The COMT Val158 Met polymorphism as an associated risk factor for Alzheimer disease and mild cognitive impairment in APOE 4 carriers. BMC Neurosci 10:125. https://doi.org/10.1186/1471-2202-10-125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Forero DA, Benítez B, Arboleda G et al (2006) Analysis of functional polymorphisms in three synaptic plasticity-related genes (BDNF, COMT AND UCHL1) in Alzheimer’s disease in Colombia. Neurosci Res 55:334–341. https://doi.org/10.1016/J.NEURES.2006.04.006

    Article  CAS  PubMed  Google Scholar 

  134. Yue X, Lu M, Lancaster T et al (2005) Brain estrogen deficiency accelerates A plaque formation in an Alzheimer’s disease animal model. Proc Natl Acad Sci 102:19198–19203. https://doi.org/10.1073/pnas.0505203102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Honma N, Saji S, Mikami T et al (2017) Estrogen-related factors in the frontal lobe of Alzheimer’s disease patients and importance of body mass index. Sci Rep 7:726. https://doi.org/10.1038/s41598-017-00815-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Li R, Shen Y, Yang L-B et al (2002) Estrogen enhances uptake of amyloid β-protein by microglia derived from the human cortex. J Neurochem 75:1447–1454. https://doi.org/10.1046/j.1471-4159.2000.0751447.x

    Article  Google Scholar 

  137. Chang D, Kwan J, Timiras PS (1997) Estrogens influence growth, maturation, and amyloid beta-peptide production in neuroblastoma cells and in a beta-APP transfected kidney 293 cell line. Adv Exp Med Biol 429:261–271

    Article  CAS  PubMed  Google Scholar 

  138. Greenfield JP, Leung LW, Cai D et al (2002) Estrogen lowers Alzheimer β-amyloid generation by stimulating trans -Golgi network vesicle biogenesis. J Biol Chem 277:12128–12136. https://doi.org/10.1074/jbc.M110009200

    Article  CAS  PubMed  Google Scholar 

  139. Petanceska S, Nagy V, Frail D, Gandy S (2000) Ovariectomy and 17β-estradiol modulate the levels of Alzheimer’s amyloid β peptides in brain. Exp Gerontol 35:1317–1325. https://doi.org/10.1016/S0531-5565(00)00157-1

    Article  CAS  PubMed  Google Scholar 

  140. Zheng H, Xu H, Uljon SN et al (2002) Modulation of A (beta) peptides by estrogen in mouse models. J Neurochem 80:191–196

    Article  CAS  PubMed  Google Scholar 

  141. Levin-Allerhand JA, Lominska CE, Wang J, Smith JD (2002) 17α-estradiol and 17β-estradiol treatments are effective in lowering cerebral amyloid-β levels in AβPPSWE transgenic mice. J Alzheimers Dis 4:449–457. https://doi.org/10.3233/JAD-2002-4601

    Article  CAS  PubMed  Google Scholar 

  142. Carroll JC, Rosario ER, Chang L et al (2007) Progesterone and estrogen regulate Alzheimer-like neuropathology in Female 3xTg-AD Mice. J Neurosci 27:13357–13365. https://doi.org/10.1523/JNEUROSCI.2718-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Shi J, Panickar KS, Yang S-H et al (1998) Estrogen attenuates over-expression of β-amyloid precursor protein messager RNA in an animal model of focal ischemia. Brain Res 810:87–92. https://doi.org/10.1016/S0006-8993(98)00888-9

    Article  CAS  PubMed  Google Scholar 

  144. Wen Y, Onyewuchi O, Yang S et al (2004) Increased β-secretase activity and expression in rats following transient cerebral ischemia. Brain Res 1009:1–8. https://doi.org/10.1016/J.BRAINRES.2003.09.086

    Article  CAS  PubMed  Google Scholar 

  145. Maki PM, Zonderman AB, Resnick SM (2001) Enhanced verbal memory in nondemented elderly women receiving hormone-replacement therapy. Am J Psychiatry 158:227–233. https://doi.org/10.1176/appi.ajp.158.2.227

    Article  CAS  PubMed  Google Scholar 

  146. Resnick SM, Maki PM (2001) Effects of hormone replacement therapy on cognitive and brain aging. Ann N Y Acad Sci 949:203–214

    Article  CAS  PubMed  Google Scholar 

  147. Resnick SM, Maki PM, Golski S et al (1998) Effects of estrogen replacement therapy on PET cerebral blood flow and neuropsychological performance. Horm Behav 34(2):171–182. https://doi.org/10.1006/hbeh.1998.1476

    Article  CAS  PubMed  Google Scholar 

  148. OHKURA T, ISSE K, AKAZAWA K et al (1994) Evaluation of estrogen treatment in female patients with dementia of the Alzheimer type. Endocr J 41:361–371. https://doi.org/10.1507/endocrj.41.361

    Article  CAS  PubMed  Google Scholar 

  149. Kawas C, Resnick S, Morrison A et al (1997) A prospective study of estrogen replacement therapy and the risk of developing Alzheimer’s disease: the Baltimore longitudinal study of aging. Neurology 48:1517–1521

    Article  CAS  PubMed  Google Scholar 

  150. Paganini-Hill A, Henderson VW (1996) Estrogen replacement therapy and risk of Alzheimer disease. Arch Intern Med 156:2213. https://doi.org/10.1001/archinte.1996.00440180075009

    Article  CAS  PubMed  Google Scholar 

  151. Schneider LS, Farlow MR, Henderson VW, Pogoda JM (1996) Effects of estrogen replacement therapy on response to tacrine in patients with Alzheimer’s disease. Neurology 46:1580–1584

    Article  CAS  PubMed  Google Scholar 

  152. Espeland MA, Rapp SR, Shumaker SA et al (2004) Conjugated equine estrogens and global cognitive funtion in postmenopausal women: women’s health initiative memory study. J Am Med Assoc 291(24):2959–2968. https://doi.org/10.1001/jama.291.24.2959

    Article  CAS  Google Scholar 

  153. Shumaker SA, Legault C, Kuller L et al (2004) Conjugated equine estrogens and incidence of probable dementia and mild cognitive impairment in postmenopausal women: women’s health initiative memory study. JAMA 291:2947–2958. https://doi.org/10.1001/jama.291.24.2947

    Article  CAS  PubMed  Google Scholar 

  154. Rapp SR, Espeland MA, Shumaker SA et al (2003) Effect of estrogen plus progestin on global cognitive function in postmenopausal women. JAMA 289:2663. https://doi.org/10.1001/jama.289.20.2663

    Article  CAS  PubMed  Google Scholar 

  155. Shumaker SA, Legault C, Rapp SR et al (2003) Estrogen plus progestin and the incidence of dementia and mild cognitive impairment in postmenopausal women. JAMA 289(20):2651–2662. https://doi.org/10.1001/jama.289.20.2651

    Article  CAS  PubMed  Google Scholar 

  156. Mulnard RA, Cotman CW, Kawas C et al (2000) Estrogen replacement therapy for treatment of mild to moderate Alzheimer disease: a randomized controlled trial. Alzheimer’s Disease Cooperative Study. JAMA 283:1007–1015

    Article  CAS  PubMed  Google Scholar 

  157. Anderson GL, Limacher M, Assaf AR et al (2004) Effects of conjugated equine estrogen in postmenopausal women with hysterectomy. JAMA 291:1701. https://doi.org/10.1001/jama.291.14.1701

    Article  CAS  PubMed  Google Scholar 

  158. Manson JE, Hsia J, Johnson KC et al (2003) Estrogen plus progestin and the risk of coronary heart disease. N Engl J Med 349:523–534. https://doi.org/10.1056/NEJMoa030808

    Article  CAS  PubMed  Google Scholar 

  159. Singh M, Sumien N, Kyser C, Simpkins JW (2008) Estrogens and progesterone as neuroprotectants: what animal models teach us. Front Biosci 13:1083–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Singh M, Simpkins JW (2005) The future of hormone therapy: what basic science and clinical studies teach us - summary. In: Annals of the New York Academy of Sciences

  161. Simpkins JW, Yang SH, Wen Y, Singh M (2005) Estrogens, progestins, menopause and neurodegeneration: bsic and clinical studies. Cell Mol Life Sci 62(3):271–280

    Article  CAS  PubMed  Google Scholar 

  162. Zandi PP, Carlson MC, Plassman BL et al (2002) Hormone replacement therapy and incidence of Alzheimer disease in older women: the Cache County study. JAMA 288:2123–2129

    Article  CAS  PubMed  Google Scholar 

  163. Henderson VW, Stanford CA, Espeland MA, Hogan PE, Rapp SRSML et al (2007) Prior use of hormone therapy and incident Alzheimer’s disease in the Women’s Health Initiative Memory Study. American Academy of Neurology 59th Annual Meeting. In: American Academy of Neurology 59th Annual Meeting

  164. Benvenuti S, Luciani P, Vannelli GB et al (2005) Estrogen and selective estrogen receptor modulators exert neuroprotective effects and stimulate the expression of selective Alzheimer’s disease Indicator-1 , a recently discovered antiapoptotic gene, in human neuroblast long-term cell cultures. J Clin Endocrinol Metab 90:1775–1782. https://doi.org/10.1210/jc.2004-0066

    Article  CAS  PubMed  Google Scholar 

  165. Luciani P, Deledda C, Rosati F et al (2008) Seladin-1 is a fundamental mediator of the neuroprotective effects of estrogen in human neuroblast long-term cell cultures. Endocrinology 149:4256–4266. https://doi.org/10.1210/en.2007-1795

    Article  CAS  PubMed  Google Scholar 

  166. Spampinato SF, Molinaro G, Merlo S et al (2012) Estrogen receptors and type 1 metabotropic glutamate receptors are interdependent in protecting cortical neurons against -amyloid toxicity. Mol Pharmacol 81:12–20. https://doi.org/10.1124/mol.111.074021

    Article  CAS  PubMed  Google Scholar 

  167. Ramírez CM, González M, Díaz M et al (2009) VDAC and ERα interaction in caveolae from human cortex is altered in Alzheimer’s disease. Mol Cell Neurosci 42:172–183. https://doi.org/10.1016/J.MCN.2009.07.001

    Article  PubMed  Google Scholar 

  168. Zhao L, Wu T, Brinton RD (2004) Estrogen receptor subtypes alpha and beta contribute to neuroprotection and increased Bcl-2 expression in primary hippocampal neurons. Brain Res 1010:22–34. https://doi.org/10.1016/J.BRAINRES.2004.02.066

    Article  CAS  PubMed  Google Scholar 

  169. Liu F, Day M, Muñiz LC et al (2008) Activation of estrogen receptor-β regulates hippocampal synaptic plasticity and improves memory. Nat Neurosci 11:334–343. https://doi.org/10.1038/nn2057

    Article  CAS  PubMed  Google Scholar 

  170. Suwanna N, Thangnipon W, Soi-ampornkul R (2014) Neuroprotective effects of diarylpropionitrile against β-amyloid peptide-induced neurotoxicity in rat cultured cortical neurons. Neurosci Lett 578:44–49. https://doi.org/10.1016/J.NEULET.2014.06.029

    Article  CAS  PubMed  Google Scholar 

  171. Zhang JQ, Cai WQ, Zhou DS, Su BY (2002) Distribution and differences of estrogen receptor beta immunoreactivity in the brain of adult male and female rats. Brain Res 935:73–80

    Article  CAS  PubMed  Google Scholar 

  172. Di Giovanni S, Eleuteri S, Paleologou KE et al (2010) Entacapone and tolcapone, two catechol O -methyltransferase inhibitors, block fibril formation of α-synuclein and β-amyloid and protect against amyloid-induced toxicity. J Biol Chem 285:14941–14954. https://doi.org/10.1074/jbc.M109.080390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Valkovič P, Benetin J, Blažíček P et al (2005) Reduced plasma homocysteine levels in levodopa/entacapone treated Parkinson patients. Parkinsonism Relat Disord 11:253–256. https://doi.org/10.1016/J.PARKRELDIS.2005.01.007

    Article  PubMed  Google Scholar 

  174. Müller T, Woitalla D, Muhlack S (2011) Inhibition of catechol-O-methyltransferase modifies acute homocysteine rise during repeated levodopa application in patients with Parkinson’s disease. Naunyn Schmiedeberg's Arch Pharmacol 383:627–633. https://doi.org/10.1007/s00210-011-0629-7

    Article  CAS  Google Scholar 

  175. Nevrly M, Kanovsky P, Vranova H et al (2010) Effect of entacapone on plasma homocysteine levels in Parkinson’s disease patients. Neurol Sci 31:565–569. https://doi.org/10.1007/s10072-010-0262-0

    Article  PubMed  Google Scholar 

  176. Liljequist R, Haapalinna A, Ahlander M et al (1997) Catechol 0-methyltransferase inhibitor tolcapone has minor influence on performance in experimental memory models in rats. Behav Brain Res 82:195–202. https://doi.org/10.1016/S0166-4328(97)80989-8

    Article  CAS  PubMed  Google Scholar 

  177. Lapish CC, Ahn S, Evangelista LM et al (2009) Tolcapone enhances food-evoked dopamine efflux and executive memory processes mediated by the rat prefrontal cortex. Psychopharmacology 202:521–530. https://doi.org/10.1007/s00213-008-1342-1

    Article  CAS  PubMed  Google Scholar 

  178. Khromova I, Voronina T, Kraineva VA et al (1997) Effects of selective catechol-O-methyltransferase inhibitors on single-trial passive avoidance retention in male rats. Behav Brain Res 86:49–57. https://doi.org/10.1016/S0166-4328(96)02242-5

    Article  CAS  PubMed  Google Scholar 

  179. Giakoumaki SG, Roussos P, Bitsios P (2008) Improvement of prepulse inhibition and executive function by the COMT inhibitor tolcapone depends on COMT Val158Met polymorphism. Neuropsychopharmacology 33:3058–3068. https://doi.org/10.1038/npp.2008.82

    Article  CAS  PubMed  Google Scholar 

  180. Apud JA, Mattay V, Chen J et al (2007) Tolcapone improves cognition and cortical information processing in normal human subjects. Neuropsychopharmacology 32:1011–1020. https://doi.org/10.1038/sj.npp.1301227

    Article  CAS  PubMed  Google Scholar 

  181. Roussos P, Giakoumaki SG, Bitsios P (2009) Tolcapone effects on gating, working memory, and mood interact with the synonymous catechol-O-methyltransferase rs4818C/G polymorphism. Biol Psychiatry 66:997–1004. https://doi.org/10.1016/J.BIOPSYCH.2009.07.008

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors concede the support by the Pharmakon Neuroscience Research Network, Dhaka, Bangladesh.

Funding

This project was supported by the Pharmakon Neuroscience Research Network, Dhaka, Bangladesh.

Author information

Authors and Affiliations

Authors

Contributions

MSU conceived the original idea and designed the outlines of the study. MSU, MMR, MJ, MSR, and MSH wrote the draft of the manuscript. MSU prepared the figures for the manuscript. AI, MA, BM, GEB, UMO, and GMA performed the literature review and aided in revising the manuscript. All authors have read and agreed to the final version of the manuscript.

Corresponding authors

Correspondence to Md. Sahab Uddin, George E. Barreto or Ghulam Md Ashraf.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uddin, M.S., Rahman, M.M., Jakaria, M. et al. Estrogen Signaling in Alzheimer’s Disease: Molecular Insights and Therapeutic Targets for Alzheimer’s Dementia. Mol Neurobiol 57, 2654–2670 (2020). https://doi.org/10.1007/s12035-020-01911-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-01911-8

Keywords

Navigation