Skip to main content
Log in

Autophagy as a Homeostatic Mechanism in Response to Stress Conditions in the Central Nervous System

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Autophagy is considered a major bulk degradation system that helps cells to counteract different intracellular and extracellular stress signals. Several protein complexes integrate multiple signals in order to activate autophagy, which sequesters damaged cellular components and carries them to lysosomes for degradation. This active mechanism is essential to maintain cell homeostasis and particularly in neurons to sustain their viability. Because of their polarized morphology, neurons face special challenges to recycle cellular components through autophagy in dendrites and distal regions of axons. Thus, autophagy is critical in the remodeling of pre- and post-synaptic constituents to sustain neuronal functionality. Under stress conditions, autophagy may play either a cytotoxic or a cytoprotective role. This discrepancy is partly due to the lack of a full characterization of the autophagic process and conclusive evidence to support whether basal autophagy is stimulated or impaired in a particular condition. Moreover, in many studies, only pharmacologic tools have been used to modulate autophagy. Throughout the present review, we go over the literature revealing autophagy induction in the nervous system under diverse stressful conditions, the signaling pathways involved, and its consequences for neuronal homeostasis and survival. We have focused on five particular stress conditions that alter neuronal homeostasis and can induce neuronal death including, starvation, oxidative stress, endoplasmic reticulum (ER) stress, proteotoxic stress, and aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6:463–477. https://doi.org/10.1016/S1534-5807(04)00099-1

    Article  CAS  PubMed  Google Scholar 

  2. He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93. https://doi.org/10.1146/annurev-genet-102808-114910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yang Z, Klionsky DJ (2010) Eaten alive: a history of macroautophagy. Nat Cell Biol 12:814–822. https://doi.org/10.1038/ncb0910-814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Høyer-Hansen M, Bastholm L, Szyniarowski P, Campanella M, Szabadkai G, Farkas T, Bianchi K, Fehrenbacher N et al (2007) Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-β, and Bcl-2. Mol Cell 25:193–205. https://doi.org/10.1016/J.MOLCEL.2006.12.009

    Article  PubMed  Google Scholar 

  5. Li WW, Li J, Bao JK (2012) Microautophagy: lesser-known self-eating. Cell Mol Life Sci 69:1125–1136. https://doi.org/10.1007/s00018-011-0865-5

    Article  CAS  PubMed  Google Scholar 

  6. Arias E, Cuervo AM (2011) Chaperone-mediated autophagy in protein quality control. Curr Opin Cell Biol 23:184–189. https://doi.org/10.1016/j.ceb.2010.10.009

    Article  CAS  PubMed  Google Scholar 

  7. Weidberg H, Shvets E, Elazar Z (2011) Biogenesis and cargo selectivity of autophagosomes. Annu Rev Biochem 80:125–156. https://doi.org/10.1146/annurev-biochem-052709-094552

    Article  CAS  PubMed  Google Scholar 

  8. Rubinsztein DC, Shpilka T, Elazar Z (2012) Mechanisms of autophagosome biogenesis. Curr Biol 22:R29–R34. https://doi.org/10.1016/j.cub.2011.11.034

    Article  CAS  PubMed  Google Scholar 

  9. Kroemer G, Mariño G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40:280–293. https://doi.org/10.1016/j.molcel.2010.09.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Geng J, Klionsky DJ (2008) The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. “Protein Modifications: Beyond the Usual Suspects” Review Series. EMBO Rep 9:859–864. https://doi.org/10.1038/embor.2008.163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shpilka T, Weidberg H, Pietrokovski S, Elazar Z (2011) Atg8: an autophagy-related ubiquitin-like protein family. Genome Biol 12:226. https://doi.org/10.1186/gb-2011-12-7-226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gutierrez MG, Munafó DB, Berón W, Colombo MI (2004) Rab7 is required for the normal progression of the autophagic pathway in mammalian cells. J Cell Sci 117:2687–2697

    Article  CAS  PubMed  Google Scholar 

  13. Tanida I (2011) Autophagy basics. Microbiol Immunol 55:1–11. https://doi.org/10.1111/j.1348-0421.2010.00271.x

    Article  CAS  PubMed  Google Scholar 

  14. Codogno P, Mehrpour M, Proikas-Cezanne T (2011) Canonical and non-canonical autophagy: variations on a common theme of self-eating? Nat Rev Mol Cell Biol 13:7–12

    Article  PubMed  Google Scholar 

  15. Grishchuk Y, Ginet V, Truttmann AC, Clarke PGH, Puyal J (2011) Beclin 1-independent autophagy contributes to apoptosis in cortical neurons. Autophagy 7:1115–1131. https://doi.org/10.4161/auto.7.10.16608

    Article  CAS  PubMed  Google Scholar 

  16. Nishida Y, Arakawa S, Fujitani K, Yamaguchi H, Mizuta T, Kanaseki T, Komatsu M, Otsu K et al (2009) Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature 461:654–658

    Article  CAS  PubMed  Google Scholar 

  17. Stolz A, Ernst A, Dikic I (2014) Cargo recognition and trafficking in selective autophagy. Nat Cell Biol 16:495–501. https://doi.org/10.1038/ncb2979

    Article  CAS  PubMed  Google Scholar 

  18. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K et al (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889. https://doi.org/10.1038/nature04724

    Article  CAS  PubMed  Google Scholar 

  19. Komatsu M, Waguri S, Chiba T, Murata S, Iwata JI, Tanida I, Ueno T, Koike M et al (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884. https://doi.org/10.1038/nature04723

    Article  CAS  PubMed  Google Scholar 

  20. Liang CC, Wang C, Peng X, Gan B, Guan JL (2010) Neural-specific deletion of FIP200 leads to cerebellar degeneration caused by increased neuronal death and axon degeneration. J Biol Chem 285:3499–3509. https://doi.org/10.1074/jbc.M109.072389

    Article  CAS  PubMed  Google Scholar 

  21. Frake RA, Menzies FM, David C et al (2015) Autophagy and neurodegeneration. J Clin Invest 125:65–74. https://doi.org/10.1172/JCI73944

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nixon RA, Yang DS, Lee JH (2008) Neurodegenerative lysosomal disorders: a continuum from development to late age. Autophagy 4:590–599. https://doi.org/10.4161/auto.6259

    Article  CAS  PubMed  Google Scholar 

  23. Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, Scaravilli F, Easton DF et al (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36:585–595. https://doi.org/10.1038/ng1362

    Article  CAS  PubMed  Google Scholar 

  24. Tanaka M, Machida Y, Niu S, Ikeda T, Jana NR, Doi H, Kurosawa M, Nekooki M et al (2004) Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nat Med 10:148–154. https://doi.org/10.1038/nm985

    Article  CAS  PubMed  Google Scholar 

  25. Sarkar S, Davies JE, Huang Z, Tunnacliffe A, Rubinsztein DC (2007) Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and α-synuclein. J Biol Chem 282:5641–5652. https://doi.org/10.1074/jbc.M609532200

    Article  CAS  PubMed  Google Scholar 

  26. Liu Y, Levine B (2015) Autosis and autophagic cell death: the dark side of autophagy. Cell Death Differ 22:367–376. https://doi.org/10.1038/cdd.2014.143

    Article  CAS  PubMed  Google Scholar 

  27. Liu Y, Shoji-Kawata S, Sumpter RM, Wei Y, Ginet V, Zhang L, Posner B, Tran KA et al (2013) Autosis is a Na+,K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia. Proc Natl Acad Sci U S A 110:20364–20371. https://doi.org/10.1073/pnas.1319661110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Galluzzi L, Bravo-San Pedro JM, Blomgren K, Kroemer G (2016) Autophagy in acute brain injury. Nat Rev Neurosci 17:467–484. https://doi.org/10.1038/nrn.2016.51

    Article  CAS  PubMed  Google Scholar 

  29. Kulkarni VV, Maday S (2018) Compartment-specific dynamics and functions of autophagy in neurons. Dev Neurobiol 78:298–310. https://doi.org/10.1002/dneu.22562

    Article  CAS  PubMed  Google Scholar 

  30. Maday S, Wallace KE, Holzbaur ELF (2012) Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons. J Cell Biol 196:407 LP–407417

    Article  Google Scholar 

  31. Maday S, Holzbaur ELF (2014) Autophagosome biogenesis in primary neurons follows an ordered and spatially regulated pathway. Dev Cell 30:71–85. https://doi.org/10.1016/J.DEVCEL.2014.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Goo MS, Sancho L, Slepak N et al (2017) Activity-dependent trafficking of lysosomes in dendrites and dendritic spines. J Cell Biol 16:2499–2513

    Article  Google Scholar 

  33. Vijayan V, Verstreken P (2017) Autophagy in the presynaptic compartment in health and disease. J Cell Biol 216:1895–1906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hernandez D, Torres CA, Setlik W, Cebrián C, Mosharov EV, Tang G, Cheng HC, Kholodilov N et al (2012) Regulation of presynaptic neurotransmission by macroautophagy. Neuron 74:277–284. https://doi.org/10.1016/J.NEURON.2012.02.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Torres CA, Sulzer D (2012) Macroautophagy can press a brake on presynaptic neurotransmission. Autophagy 8:1540–1541. https://doi.org/10.4161/auto.21330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shehata M, Matsumura H, Okubo-Suzuki R et al (2012) Neuronal stimulation induces autophagy in hippocampal neurons that is involved in AMPA receptor degradation after chemical long-term depression. J Neurosci 32:10413 LP–10410422

    Article  Google Scholar 

  37. Baek KH, Park J, Shin I (2012) Autophagy-regulating small molecules and their therapeutic applications. Chem Soc Rev 41:3245–3263. https://doi.org/10.1039/c2cs15328a

    Article  CAS  PubMed  Google Scholar 

  38. Demetriades C, Doumpas N, Teleman AA (2014) Regulation of TORC1 in response to amino acid starvation via lysosomal recruitment of TSC2. Cell 156:786–799. https://doi.org/10.1016/j.cell.2014.01.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. McAlpine F, Williamson LE, Tooze SA, Chan EYW (2013) Regulation of nutrient-sensitive autophagy by uncoordinated 51-like kinases 1 and 2. Autophagy 9:361–373. https://doi.org/10.4161/auto.23066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wong P-M, Puente C, Ganley IG, Jiang X (2013) The ULK1 complex. Autophagy 9:124–137. https://doi.org/10.4161/auto.23323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Plomp PJAM, Wolvetang EJ, Groen AK et al (1987) Energy dependence of autophagic protein degradation in isolated rat hepatocytes. Eur J Biochem 164:197–203. https://doi.org/10.1111/j.1432-1033.1987.tb11011.x

    Article  CAS  PubMed  Google Scholar 

  42. Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y (2004) In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15:1101–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Alirezaei M, Kemball CC, Flynn CT, Wood MR, Whitton JL, Kiosses WB (2010) Short-term fasting induces profound neuronal autophagy. Autophagy 6:702–710. https://doi.org/10.4161/auto.6.6.12376

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kaushik S, Rodriguez-Navarro JA, Arias E, Kiffin R, Sahu S, Schwartz GJ, Cuervo AM, Singh R (2011) Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance. Cell Metab 14:173–183. https://doi.org/10.1016/J.CMET.2011.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Meng Q, Cai D (2011) Defective hypothalamic autophagy directs the central pathogenesis of obesity via the IkappaB kinase beta (IKKbeta)/NF-kappaB pathway. J Biol Chem 286:32324–32332. https://doi.org/10.1074/jbc.M111.254417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Young JE, Martinez RA, La Spada AR (2009) Nutrient deprivation induces neuronal autophagy and implicates reduced insulin signaling in neuroprotective autophagy activation. J Biol Chem 284:2363–2373. https://doi.org/10.1074/jbc.M806088200

    Article  PubMed  PubMed Central  Google Scholar 

  47. Maday S, Holzbaur ELF (2016) Compartment-specific regulation of autophagy in primary neurons. J Neurosci 36:5933 LP–5935945

    Article  Google Scholar 

  48. Gerónimo-Olvera C, Montiel T, Rincon-Heredia R, Castro-Obregón S, Massieu L (2017) Autophagy fails to prevent glucose deprivation/glucose reintroduction-induced neuronal death due to calpain-mediated lysosomal dysfunction in cortical neurons. Cell Death Dis 8:e2911. https://doi.org/10.1038/cddis.2017.299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Camberos-Luna L, Gerónimo-Olvera C, Montiel T, Rincon-Heredia R, Massieu L (2016) The ketone body, β-hydroxybutyrate stimulates the autophagic flux and prevents neuronal death induced by glucose deprivation in cortical cultured neurons. Neurochem Res 41:600–609. https://doi.org/10.1007/s11064-015-1700-4

    Article  CAS  PubMed  Google Scholar 

  50. Jang BG, Choi BY, Kim JH et al (2013) Impairment of autophagic flux promotes glucose reperfusion-induced neuro2A cell death after glucose deprivation. PLoS One 8:e76466. https://doi.org/10.1371/journal.pone.0076466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Xu L, Ash JD (2016) The role of AMPK pathway in neuroprotection. In: Retinal degenerative diseases. Adv Exp Med Biol 854:425–430

    Article  CAS  PubMed  Google Scholar 

  52. Kim J, Kundu M, Viollet B, Guan K-L (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13:132–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Oh TS, Cho H, Cho JH, Yu SW, Kim EK (2016) Hypothalamic AMPK-induced autophagy increases food intake by regulating NPY and POMC expression. Autophagy 12:2009–2025. https://doi.org/10.1080/15548627.2016.1215382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wei K, Wang P, Miao C-Y (2012) A double-edged sword with therapeutic potential: an updated role of autophagy in ischemic cerebral injury. CNS Neurosci Ther 18:879–886. https://doi.org/10.1111/cns.12005

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wang P, Shao B-Z, Deng Z, Chen S, Yue Z, Miao CY (2018) Autophagy in ischemic stroke. Prog Neurobiol 163–164:98–117. https://doi.org/10.1016/J.PNEUROBIO.2018.01.001

    Article  PubMed  Google Scholar 

  56. Fu L, Huang L, Cao C, Yin Q, Liu J (2016) Inhibition of AMP-activated protein kinase alleviates focal cerebral ischemia injury in mice: interference with mTOR and autophagy. Brain Res 1650:103–111. https://doi.org/10.1016/J.BRAINRES.2016.08.035

    Article  CAS  PubMed  Google Scholar 

  57. Jiang T, Yu J-T, Zhu X-C, Wang HF, Tan MS, Cao L, Zhang QQ, Gao L et al (2014) Acute metformin preconditioning confers neuroprotection against focal cerebral ischaemia by pre-activation of AMPK-dependent autophagy. Br J Pharmacol 171:3146–3157. https://doi.org/10.1111/bph.12655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lu N, Li X, Tan R, An J, Cai Z, Hu X, Wang F, Wang H et al (2018) HIF-1α/Beclin1-mediated autophagy is involved in neuroprotection induced by hypoxic preconditioning. J Mol Neurosci 66:238–250. https://doi.org/10.1007/s12031-018-1162-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ney PA (2015) Mitochondrial autophagy: origins, significance, and role of BNIP3 and NIX. Biochim Biophys Acta 1853:2775–2783. https://doi.org/10.1016/J.BBAMCR.2015.02.022

    Article  CAS  PubMed  Google Scholar 

  60. Zhan L, Chen S, Li K et al (2017) Autophagosome maturation mediated by Rab7 contributes to neuroprotection of hypoxic preconditioning against global cerebral ischemia in rats. Cell Death Dis 8:e2949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Singh AK, Kashyap MP, Tripathi VK, Singh S, Garg G, Rizvi SI (2017) Neuroprotection through rapamycin-induced activation of autophagy and PI3K/Akt1/mTOR/CREB signaling against amyloid-β-induced oxidative stress, synaptic/neurotransmission dysfunction, and neurodegeneration in adult rats. Mol Neurobiol 54:5815–5828. https://doi.org/10.1007/s12035-016-0129-3

    Article  CAS  PubMed  Google Scholar 

  62. Carloni S, Girelli S, Scopa C, Buonocore G, Longini M, Balduini W (2010) Activation of autophagy and Akt/CREB signaling play an equivalent role in the neuroprotective effect of rapamycin in neonatal hypoxia-ischemia. Autophagy 6:366–377. https://doi.org/10.4161/auto.6.3.11261

    Article  CAS  PubMed  Google Scholar 

  63. Zhang X-Y, Zhang T-T, Song D-D, Zhou JH, Han R, Qin ZH, Sheng R (2015) Endoplasmic reticulum chaperone GRP78 is involved in autophagy activation induced by ischemic preconditioning in neural cells. Mol Brain 8:20. https://doi.org/10.1186/s13041-015-0112-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Casas C (2017) GRP78 at the centre of the stage in cancer and neuroprotection. Front Neurosci 11:177. https://doi.org/10.3389/fnins.2017.00177

    Article  PubMed  PubMed Central  Google Scholar 

  65. Cha-Molstad H, Yu JE, Lee SH, Kim JG, Sung KS, Hwang J, Yoo YD, Lee YJ et al (2016) Modulation of SQSTM1/p62 activity by N-terminal arginylation of the endoplasmic reticulum chaperone HSPA5/GRP78/BiP. Autophagy 12:426–428. https://doi.org/10.1080/15548627.2015.1126047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sheng R, Liu X-Q, Zhang L-S, Gao B, Han R, Wu YQ, Zhang XY, Qin ZH (2012) Autophagy regulates endoplasmic reticulum stress in ischemic preconditioning. Autophagy 8:310–325. https://doi.org/10.4161/auto.18673

    Article  CAS  PubMed  Google Scholar 

  67. Ng F, Tang BL (2013) Sirtuins’ modulation of autophagy. J Cell Physiol 228:2262–2270. https://doi.org/10.1002/jcp.24399

    Article  CAS  PubMed  Google Scholar 

  68. Lee IH, Cao L, Mostoslavsky R et al (2008) A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci 105:3374 LP–3373379

    Article  Google Scholar 

  69. Araki T, Sasaki Y, Milbrandt J (2004) Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science (80-) 305:1010 LP–1011013

    Article  Google Scholar 

  70. Parker JA, Arango M, Abderrahmane S, Lambert E, Tourette C, Catoire H, Néri C (2005) Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nat Genet 37:349–350

    Article  CAS  PubMed  Google Scholar 

  71. Deng H, Mi M (2016) Resveratrol attenuates Aβ25-35 caused neurotoxicity by inducing autophagy through the TyrRS-PARP1-SIRT1 signaling pathway. Neurochem Res 41:2367–2379. https://doi.org/10.1007/s11064-016-1950-9

    Article  CAS  PubMed  Google Scholar 

  72. Liu G, Park S-H, Imbesi M, Nathan WJ, Zou X, Zhu Y, Jiang H, Parisiadou L et al (2016) Loss of NAD-dependent protein deacetylase sirtuin-2 alters mitochondrial protein acetylation and dysregulates mitophagy. Antioxid Redox Signal 26:849–863. https://doi.org/10.1089/ars.2016.6662

    Article  CAS  PubMed  Google Scholar 

  73. Gal J, Bang Y, Choi HJ (2012) SIRT2 interferes with autophagy-mediated degradation of protein aggregates in neuronal cells under proteasome inhibition. Neurochem Int 61:992–1000. https://doi.org/10.1016/J.NEUINT.2012.07.010

    Article  CAS  PubMed  Google Scholar 

  74. Popa-Wagner A, Mitran S, Sivanesan S, Chang E, Buga AM (2013) ROS and brain diseases: the good, the bad, and the ugly. Oxidative Med Cell Longev 2013:963520–963514. https://doi.org/10.1155/2013/963520

    Article  CAS  Google Scholar 

  75. Kim GH, Kim JE, Rhie SJ, Yoon S (2015) The role of oxidative stress in neurodegenerative diseases. Exp Neurobiol 24:325–340. https://doi.org/10.5607/en.2015.24.4.325

    Article  PubMed  PubMed Central  Google Scholar 

  76. Li L, Tan J, Miao Y, Lei P, Zhang Q (2015) ROS and autophagy: interactions and molecular regulatory mechanisms. Cell Mol Neurobiol 35:615–621. https://doi.org/10.1007/s10571-015-0166-x

    Article  CAS  PubMed  Google Scholar 

  77. Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z (2007) Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26:1749–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Li L, Chen Y, Gibson SB (2013) Starvation-induced autophagy is regulated by mitochondrial reactive oxygen species leading to AMPK activation. Cell Signal 25:50–65. https://doi.org/10.1016/J.CELLSIG.2012.09.020

    Article  CAS  PubMed  Google Scholar 

  79. Chen Y, Azad MB, Gibson SB (2009) Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ 16:1040–1052

    Article  CAS  PubMed  Google Scholar 

  80. Chen Y, McMillan-Ward E, Kong J et al (2007) Mitochondrial electron-transport-chain inhibitors of complexes I and II induce autophagic cell death mediated by reactive oxygen species. J Cell Sci 120:4155 LP–4154166

    Article  Google Scholar 

  81. Mader BJ, Pivtoraiko VN, Flippo HM, Klocke BJ, Roth KA, Mangieri LR, Shacka JJ (2012) Rotenone inhibits autophagic flux prior to inducing cell death. ACS Chem Neurosci 3:1063–1072. https://doi.org/10.1021/cn300145z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lin TK, Der Chen S, Chuang YC et al (2014) Resveratrol partially prevents rotenone-induced neurotoxicity in dopaminergic SH-SY5Y cells through induction of heme oxygenase-1 dependent autophagy. Int J Mol Sci 15:1625–1646. https://doi.org/10.3390/ijms15011625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhu JH, Horbinski C, Guo F, Watkins S, Uchiyama Y, Chu CT (2007) Regulation of autophagy by extracellular signal-regulated protein kinases during 1-methyl-4-phenylpyridinium-induced cell death. Am J Pathol 170:75–86. https://doi.org/10.2353/ajpath.2007.060524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Garcia-garcia A, Anandhan A, Burns M et al (2018) Impairment of Atg5-dependent autophagic flux promotes paraquat- and MPP+-induced apoptosis but not rotenone or 6-hydroxydopamine toxicity. Toxicol Sci 136:166–182. https://doi.org/10.1093/toxsci/kft188

    Article  CAS  Google Scholar 

  85. Tzeng YW, Lee LY, Chao PL, Lee HC, Wu RT, Lin AMY (2010) Role of autophagy in protection afforded by hypoxic preconditioning against MPP+-induced neurotoxicity in SH-SY5Y cells. Free Radic Biol Med 49:839–846. https://doi.org/10.1016/J.FREERADBIOMED.2010.06.004

    Article  CAS  PubMed  Google Scholar 

  86. Zhang Y, Wu JY, Weng LH, Li XX, Yu LJ, Xu Y (2017) Valproic acid protects against MPP+-mediated neurotoxicity in SH-SY5Y cells through autophagy. Neurosci Lett 638:60–68. https://doi.org/10.1016/J.NEULET.2016.12.017

    Article  CAS  PubMed  Google Scholar 

  87. Wu Y, Li X, Xie W, Jankovic J, le W, Pan T (2010) Neuroprotection of deferoxamine on rotenone-induced injury via accumulation of HIF-1α and induction of autophagy in SH-SY5Y cells. Neurochem Int 57:198–205. https://doi.org/10.1016/J.NEUINT.2010.05.008

    Article  CAS  PubMed  Google Scholar 

  88. Higgins GC, Devenish RJ, Beart PM, Nagley P (2011) Autophagic activity in cortical neurons under acute oxidative stress directly contributes to cell death. Cell Mol Life Sci 68:3725–3740. https://doi.org/10.1007/s00018-011-0667-9

    Article  CAS  PubMed  Google Scholar 

  89. Castino R, Bellio N, Follo C, Murphy D, Isidoro C (2010) Inhibition of Pi3k class III-dependent autophagy prevents apoptosis and necrosis by oxidative stress in dopaminergic neuroblastoma cells. Toxicol Sci 117:152–162. https://doi.org/10.1093/toxsci/kfq170

    Article  CAS  PubMed  Google Scholar 

  90. Castino R, Fiorentino I, Cagnin M, Giovia A, Isidoro C (2011) Chelation of lysosomal iron protects dopaminergic SH-SY5Y neuroblastoma cells from hydrogen peroxide toxicity by precluding autophagy and Akt dephosphorylation. Toxicol Sci 123:523–541. https://doi.org/10.1093/toxsci/kfr179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Higgins GC, Devenish RJ, Beart PM, Nagley P (2012) Transitory phases of autophagic death and programmed necrosis during superoxide-induced neuronal cell death. Free Radic Biol Med 53:1960–1967. https://doi.org/10.1016/J.FREERADBIOMED.2012.08.586

    Article  CAS  PubMed  Google Scholar 

  92. Uchiyama Y, Koike M, Shibata M (2008) Autophagic neuron death in neonatal brain ischemia/hypoxia. Autophagy 4:404–408. https://doi.org/10.4161/auto.5598

    Article  CAS  PubMed  Google Scholar 

  93. Lu Q, Harris VA, Kumar S, Mansour HM, Black SM (2015) Autophagy in neonatal hypoxia ischemic brain is associated with oxidative stress. Redox Biol 6:516–523. https://doi.org/10.1016/J.REDOX.2015.06.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Scherz-Shouval R, Elazar Z (2011) Regulation of autophagy by ROS: physiology and pathology. Trends Biochem Sci 36:30–38. https://doi.org/10.1016/J.TIBS.2010.07.007

    Article  CAS  PubMed  Google Scholar 

  95. Schweers RL, Zhang J, Randall MS et al (2007) NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc Natl Acad Sci 104:19500 LP–19519505

    Article  Google Scholar 

  96. Pajares M, Cuadrado A, Rojo AI (2017) Modulation of proteostasis by transcription factor NRF2 and impact in neurodegenerative diseases. Redox Biol 11:543–553. https://doi.org/10.1016/j.redox.2017.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Jiang T, Harder B, Rojo de la Vega M, Wong PK, Chapman E, Zhang DD (2015) p62 links autophagy and Nrf2 signaling. Free Radic Biol Med 88:199–204. https://doi.org/10.1016/J.FREERADBIOMED.2015.06.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yamazaki H, Tanji K, Wakabayashi K, Matsuura S, Itoh K (2015) Role of the Keap1/Nrf2 pathway in neurodegenerative diseases. Pathol Int 65:210–219. https://doi.org/10.1111/pin.12261

    Article  CAS  PubMed  Google Scholar 

  99. Jeśko H, Wencel P, Strosznajder RP, Strosznajder JB (2017) Sirtuins and their roles in brain aging and neurodegenerative disorders. Neurochem Res 42:876–890. https://doi.org/10.1007/s11064-016-2110-y

    Article  CAS  PubMed  Google Scholar 

  100. Shao J, Yang X, Liu T, Zhang T, Xie QR, Xia W (2016) Autophagy induction by SIRT6 is involved in oxidative stress-induced neuronal damage. Protein Cell 7:281–290. https://doi.org/10.1007/s13238-016-0257-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lee O-H, Kim J, Kim J-M, Lee H, Kim EH, Bae SK, Choi Y, Nam HS et al (2013) Decreased expression of sirtuin 6 is associated with release of high mobility group box-1 after cerebral ischemia. Biochem Biophys Res Commun 438:388–394. https://doi.org/10.1016/J.BBRC.2013.07.085

    Article  CAS  PubMed  Google Scholar 

  102. Kang R, Livesey KM, Zeh HJ et al (2010) HMGB1: a novel Beclin 1-binding protein active in autophagy. Autophagy 6:1209–1211. https://doi.org/10.4161/auto.6.8.13651

    Article  CAS  PubMed  Google Scholar 

  103. Qi L, Sun X, Li FE, Zhu BS, Braun FK, Liu ZQ, Tang JL, Wu C et al (2015) Hmgb1 promotes mitochondrial dysfunction-triggered striatal neurodegeneration via autophagy and apoptosis activation. PLoS One 10:1–15. https://doi.org/10.1371/journal.pone.0142901

    Article  CAS  Google Scholar 

  104. Wang C, Jiang J, Zhang X, Song L, Sun K, Xu R (2016) Inhibiting HMGB1 reduces cerebral ischemia reperfusion injury in diabetic mice. Inflammation 39:1862–1870. https://doi.org/10.1007/s10753-016-0418-z

    Article  CAS  PubMed  Google Scholar 

  105. Wang T, Yuan Y, Zou H, Yang J, Zhao S, Ma Y, Wang Y, Bian J et al (2016) The ER stress regulator Bip mediates cadmium-induced autophagy and neuronal senescence. Sci Rep 6:38091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Gao B, Zhang X, Han R, Zhang TT, Chen C, Qin ZH, Sheng R (2013) The endoplasmic reticulum stress inhibitor salubrinal inhibits the activation of autophagy and neuroprotection induced by brain ischemic preconditioning. Acta Pharmacol Sin 34:657–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Feng D, Wang B, Wang L, Abraham N, Tao K, Huang L, Shi W, Dong Y et al (2017) Pre-ischemia melatonin treatment alleviated acute neuronal injury after ischemic stroke by inhibiting endoplasmic reticulum stress-dependent autophagy via PERK and IRE1 signalings. J Pineal Res 62:1–13. https://doi.org/10.1111/jpi.12395

    Article  CAS  Google Scholar 

  108. Fouillet A, Levet C, Virgone A, Robin M, Dourlen P, Rieusset J, Belaidi E, Ovize M et al (2012) ER stress inhibits neuronal death by promoting autophagy. Autophagy 8:915–926. https://doi.org/10.4161/auto.19716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhang X, Yan H, Yuan Y, Gao J, Shen Z, Cheng Y, Shen Y, Wang RR et al (2013) Cerebral ischemia-reperfusion-induced autophagy protects against neuronal injury by mitochondrial clearance. Autophagy 9:1321–1333. https://doi.org/10.4161/auto.25132

    Article  CAS  PubMed  Google Scholar 

  110. Zhang X, Yuan Y, Jiang L, Zhang J, Gao J, Shen Z, Zheng Y, Deng T et al (2014) Endoplasmic reticulum stress induced by tunicamycin and thapsigargin protects against transient ischemic brain injury. Autophagy 10:1801–1813. https://doi.org/10.4161/auto.32136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lee H, Noh J-Y, Oh Y, Kim Y, Chang JW, Chung CW, Lee ST, Kim M et al (2012) IRE1 plays an essential role in ER stress-mediated aggregation of mutant huntingtin via the inhibition of autophagy flux. Hum Mol Genet 21:101–114

    Article  PubMed  Google Scholar 

  112. Ogata M, Hino S-I, Saito A et al (2006) Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 26:9220–9231. https://doi.org/10.1128/MCB.01453-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kong F-J, Ma L-L, Guo J-J et al (2018) Endoplasmic reticulum stress/autophagy pathway is involved in diabetes-induced neuronal apoptosis and cognitive decline in mice. Clin Sci 132:111 LP–111125

    Article  Google Scholar 

  114. Vidal RL, Hetz C (2012) Crosstalk between the UPR and autophagy pathway contributes to handling cellular stress in neurodegenerative disease. Autophagy 8:970–972. https://doi.org/10.4161/auto.20139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Vidal RL, Figueroa A, Court FA, Thielen P, Molina C, Wirth C, Caballero B, Kiffin R et al (2012) Targeting the UPR transcription factor XBP1 protects against Huntington’s disease through the regulation of FoxO1 and autophagy. Hum Mol Genet 21:2245–2262. https://doi.org/10.1093/hmg/dds040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kouroku Y, Fujita E, Tanida I, Ueno T, Isoai A, Kumagai H, Ogawa S, Kaufman RJ et al (2007) ER stress (PERK/eIF2α phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ 14:230–239. https://doi.org/10.1038/sj.cdd.4401984

    Article  CAS  PubMed  Google Scholar 

  117. Rashid HO, Yadav RK, Kim HR, Chae HJ (2015) ER stress: autophagy induction, inhibition and selection. Autophagy 11:1956–1977. https://doi.org/10.1080/15548627.2015.1091141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Princiotta MF, Finzi D, Qian S-B, Gibbs J, Schuchmann S, Buttgereit F, Bennink JR, Yewdell JW (2003) Quantitating protein synthesis, degradation, and endogenous antigen processing. Immunity 18:343–354. https://doi.org/10.1016/S1074-7613(03)00051-7

    Article  CAS  PubMed  Google Scholar 

  119. Yao TP (2010) The role of ubiquitin in autophagy-dependent protein aggregate processing. Genes Cancer 1:779–786. https://doi.org/10.1177/1947601910383277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kageyama S, Sou YS, Uemura T, Kametaka S, Saito T, Ishimura R, Kouno T, Bedford L et al (2014) Proteasome dysfunction activates autophagy and the Keap1-Nrf2 pathway. J Biol Chem 289:24944–24955. https://doi.org/10.1074/jbc.M114.580357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zatloukal K, Stumptner C, Fuchsbichler A, Heid H, Schnoelzer M, Kenner L, Kleinert R, Prinz M et al (2002) p62 is a common component of cytoplasmic inclusions in protein aggregation diseases. Am J Pathol 160:255–263. https://doi.org/10.1016/S0002-9440(10)64369-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Matsumoto G, Wada K, Okuno M, Kurosawa M, Nukina N (2011) Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins. Mol Cell 44:279–289. https://doi.org/10.1016/J.MOLCEL.2011.07.039

    Article  CAS  PubMed  Google Scholar 

  123. Nagaoka U, Kim K, Jana NR, Doi H, Maruyama M, Mitsui K, Oyama F, Nukina N (2004) Increased expression of p62 in expanded polyglutamine-expressing cells and its association with polyglutamine inclusions. J Neurochem 91:57–68. https://doi.org/10.1111/j.1471-4159.2004.02692.x

    Article  CAS  PubMed  Google Scholar 

  124. Lim J, Lachenmayer ML, Wu S, Liu W, Kundu M, Wang R, Komatsu M, Oh YJ et al (2015) Proteotoxic stress induces phosphorylation of p62/SQSTM1 by ULK1 to regulate selective autophagic clearance of protein aggregates. PLoS Genet 11:e1004987

    Article  PubMed  PubMed Central  Google Scholar 

  125. Pandey UB, Nie Z, Batlevi Y, McCray BA, Ritson GP, Nedelsky NB, Schwartz SL, DiProspero NA et al (2007) HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447:860–864

    Article  Google Scholar 

  126. Lee J, Koga H, Kawaguchi Y et al (2010) HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J 29:969 LP–969980. https://doi.org/10.1038/emboj.2009.405

    Article  CAS  Google Scholar 

  127. Shin Y, Klucken J, Patterson C, Hyman BT, McLean PJ (2005) The co-chaperone carboxyl terminus of Hsp70-interacting protein (CHIP) mediates α-synuclein degradation decisions between proteasomal and lysosomal pathways. J Biol Chem 280:23727–23734. https://doi.org/10.1074/jbc.M503326200

    Article  CAS  PubMed  Google Scholar 

  128. Simonsen A, Birkeland HCG, Gillooly DJ et al (2004) Alfy, a novel FYVE-domain-containing protein associated with protein granules and autophagic membranes. J Cell Sci 117:4239 LP–4234251. https://doi.org/10.1242/jcs.01287

    Article  CAS  Google Scholar 

  129. Filimonenko M, Stuffers S, Raiborg C et al (2007) Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease. J Cell Biol 179(3):485–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Finley KD, Edeen PT, Cumming RC, Mardahl-Dumesnil MD, Taylor BJ, Rodriguez MH, Hwang CE, Benedetti M et al (2003) Blue cheese mutations define a novel, conserved gene involved in progressive neural degeneration. J Neurosci 23:1254–1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Lu K, Psakhye I, Jentsch S (2014) Autophagic clearance of polyQ proteins mediated by ubiquitin-Atg8 adaptors of the conserved CUET protein family. Cell 158:549–563. https://doi.org/10.1016/j.cell.2014.05.048

    Article  CAS  PubMed  Google Scholar 

  132. Cribbs DH, Berchtold NC, Perreau V, Coleman PD, Rogers J, Tenner AJ, Cotman CW (2012) Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study. J Neuroinflam 9:179. https://doi.org/10.1186/1742-2094-9-179

    Article  CAS  Google Scholar 

  133. Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, Burman JL, Sideris DP, Fogel AI et al (2015) The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524:309–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Fivenson EM, Lautrup S, Sun N, Scheibye-Knudsen M, Stevnsner T, Nilsen H, Bohr VA, Fang EF (2017) Mitophagy in neurodegeneration and aging. Neurochem Int 109:202–209. https://doi.org/10.1016/J.NEUINT.2017.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Pickles S, Vigié P, Youle RJ (2018) Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr Biol 28:R170–R185. https://doi.org/10.1016/J.CUB.2018.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Cuervo AM, Bergamini E, Brunk UT, Dröge W, Ffrench M, Terman A (2005) Autophagy and aging: the importance of maintaining “clean” cells. Autophagy 1:131–140. https://doi.org/10.4161/auto.1.3.2017

    Article  PubMed  Google Scholar 

  137. Rubinsztein DC, Mariño G, Kroemer G (2011) Autophagy and aging. Cell 146:682–695. https://doi.org/10.1016/J.CELL.2011.07.030

    Article  CAS  PubMed  Google Scholar 

  138. Lipinski MM, Zheng B, Lu T, Yan Z, Py BF, Ng A, Xavier RJ, Li C et al (2010) Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer’s disease. Proc Natl Acad Sci 107:14164–14169. https://doi.org/10.1073/pnas.1009485107

    Article  PubMed  PubMed Central  Google Scholar 

  139. Plaza-Zabala A, Sierra-Torre V, Sierra A (2017) Autophagy and microglia: novel partners in neurodegeneration and aging. Int J Mol Sci 18(3):E598

    Article  PubMed  Google Scholar 

  140. Ott C, König J, Höhn A, Jung T, Grune T (2016) Macroautophagy is impaired in old murine brain tissue as well as in senescent human fibroblasts. Redox Biol 10:266–273. https://doi.org/10.1016/J.REDOX.2016.10.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Meléndez A, Tallóczy Z, Seaman M et al (2003) Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science (80-) 301:1387–1391

    Article  Google Scholar 

  142. Jia K, Levine B (2007) Autophagy is required for dietary restriction-mediated life span extension in C. elegans. Autophagy 3:597–599. https://doi.org/10.4161/auto.4989

    Article  PubMed  Google Scholar 

  143. Colman RJ, Anderson RM, Johnson SC et al (2009) Caloric restriction delays disease onset and mortality in rhesus monkeys. Science (80-) 325:201 LP–201204

    Article  Google Scholar 

  144. Sohal RS, Forster MJ (2014) Caloric restriction and the aging process: a critique. Free Radic Biol Med 73:366–382. https://doi.org/10.1016/J.FREERADBIOMED.2014.05.015

    Article  CAS  PubMed  Google Scholar 

  145. Lu AM, Dai JR, Guo SS et al (2017) Lysosomal proteolysis is associated with exercise-induced improvement of mitochondrial quality control in aged hippocampus. J Gerontol Ser A 72:1342–1351. https://doi.org/10.1093/gerona/glw242

    Article  CAS  Google Scholar 

  146. Bhukel A, Madeo F, Sigrist SJ (2017) Spermidine boosts autophagy to protect from synapse aging. Autophagy 13:444–445. https://doi.org/10.1080/15548627.2016.1265193

    Article  CAS  PubMed  Google Scholar 

  147. Gupta VK, Pech U, Bhukel A, Fulterer A, Ender A, Mauermann SF, Andlauer TFM, Antwi-Adjei E et al (2016) Spermidine suppresses age-associated memory impairment by preventing adverse increase of presynaptic active zone size and release. PLoS Biol 14:e1002563

    Article  PubMed  PubMed Central  Google Scholar 

  148. Valdez G, Tapia JC, Kang H et al (2010) Attenuation of age-related changes in mouse neuromuscular synapses by caloric restriction and exercise. Proc Natl Acad Sci 107:14863 LP–14814868

    Article  Google Scholar 

  149. Carnio S, LoVerso F, Baraibar MA, Longa E, Khan MM, Maffei M, Reischl M, Canepari M et al (2014) Autophagy impairment in muscle induces neuromuscular junction degeneration and precocious aging. Cell Rep 8:1509–1521. https://doi.org/10.1016/J.CELREP.2014.07.061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Garg G, Singh S, Singh AK, Rizvi SI (2016) Antiaging effect of metformin on brain in naturally aged and accelerated senescence model of rat. Rejuvenation Res 20:173–182. https://doi.org/10.1089/rej.2016.1883

    Article  CAS  Google Scholar 

Download references

Funding

LM was supported by PAPIIT IN205416 grant from Universidad Nacional Autónoma de México and CGO from Estímulos a Investigaciones Médicas Miguel Alemán Valdés.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian Gerónimo-Olvera.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerónimo-Olvera, C., Massieu, L. Autophagy as a Homeostatic Mechanism in Response to Stress Conditions in the Central Nervous System. Mol Neurobiol 56, 6594–6608 (2019). https://doi.org/10.1007/s12035-019-1546-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-019-1546-x

Keywords

Navigation