Skip to main content

Advertisement

Log in

RAGE-TLR Crosstalk Sustains Chronic Inflammation in Neurodegeneration

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Chronic inflammatory reactions are consistenly present in neurodegeneration of Alzheimer type and are considered important factors that accelerate progression of the disease. Receptors of innate immunity participate in triggering and driving inflammatory reactions. For example, Toll-like receptors (TLRs) and receptor for advanced glycation end product (RAGE), major receptors of innate immunity, play a central role in perpetuation of inflammation. RAGE activation should be perceived as a primary mechanism which determines self-perpetuated chronic inflammation, and RAGE cooperation with TLRs amplifies inflammatory signaling. In this review, we highlight and discuss that RAGE-TLR crosstalk emerges as an important driving force of chronic inflammation in Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Guillot-Sestier MV, Town T (2013) Innate immunity in Alzheimer’s disease: a complex affair. CNS Neurol Dis Drug Targets 12(5):593–607

    Article  CAS  Google Scholar 

  2. Heneka MT, Golenbock DT, Latz E (2015) Innate immunity in Alzheimer’s disease. Nat Immunol 16(3):229–236. doi:10.1038/ni.3102

    Article  CAS  PubMed  Google Scholar 

  3. Leszek J, Barreto GE, Gasiorowski K, Koutsouraki E, Avila-Rodrigues M, Aliev G (2016) Inflammatory mechanisms and oxidative stress as key factors responsible for progression of neurodegeneration: role of brain innate immune system. CNS Neurol Dis Drug Targets 15(3):329–336

    Article  CAS  Google Scholar 

  4. Serpente M, Bonsi R, Scarpini E, Galimberti D (2014) Innate immune system and inflammation in Alzheimer’s disease: from pathogenesis to treatment. Neuroimmunomodulation 21(2–3):79–87. doi:10.1159/000356529

    Article  CAS  PubMed  Google Scholar 

  5. Finch CE, Morgan TE (2007) Systemic inflammation, infection, ApoE alleles, and Alzheimer disease: a position paper. Curr Alzheimer Res 4(2):185–189

    Article  CAS  PubMed  Google Scholar 

  6. Lehnardt S, Schott E, Trimbuch T, Laubisch D, Krueger C, Wulczyn G, Nitsch R, Weber JR (2008) A vicious cycle involving release of heat shock protein 60 from injured cells and activation of toll-like receptor 4 mediates neurodegeneration in the CNS. J Neurosci 28(10):2320–2331. doi:10.1523/JNEUROSCI.4760-07.2008

    Article  CAS  PubMed  Google Scholar 

  7. Ohashi K, Burkart V, Flohe S, Kolb H (2000) Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J Immunol 164(2):558–561

    Article  CAS  PubMed  Google Scholar 

  8. Olive C (2012) Pattern recognition receptors: sentinels in innate immunity and targets of new vaccine adjuvants. Expert Rev Vaccines 11(2):237–256. doi:10.1586/erv.11.189

    Article  CAS  PubMed  Google Scholar 

  9. Schenten D, Medzhitov R (2011) The control of adaptive immune responses by the innate immune system. Adv Immunol 109:87–124. doi:10.1016/B978-0-12-387664-5.00003-0

    Article  CAS  PubMed  Google Scholar 

  10. Qian C, Liu J, Cao X (2014) Innate signaling in the inflammatory immune disorders. Cytokine Growth Factor Rev 25(6):731–738. doi:10.1016/j.cytogfr.2014.06.003

    Article  CAS  PubMed  Google Scholar 

  11. Fritz G (2011) RAGE: a single receptor fits multiple ligands. Trends Biochem Sci 36(12):625–632. doi:10.1016/j.tibs.2011.08.008

    Article  CAS  PubMed  Google Scholar 

  12. Yu Y, Ye RD (2015) Microglial abeta receptors in Alzheimer’s disease. Cell Mol Neurobiol 35(1):71–83. doi:10.1007/s10571-014-0101-6

    Article  CAS  PubMed  Google Scholar 

  13. Hajishengallis G, Lambris JD (2011) Microbial manipulation of receptor crosstalk in innate immunity. Nat Rev Immunol 11(3):187–200. doi:10.1038/nri2918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mercier BC, Ventre E, Fogeron ML, Debaud AL, Tomkowiak M, Marvel J, Bonnefoy N (2012) NOD1 cooperates with TLR2 to enhance T cell receptor-mediated activation in CD8 T cells. PLoS One 7(7):e42170. doi:10.1371/journal.pone.0042170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rojas A, Perez-Castro R, Gonzalez I, Delgado F, Romero J, Rojas I (2014) The emerging role of the receptor for advanced glycation end products on innate immunity. Int Rev Immunol 33(1):67–80. doi:10.3109/08830185.2013.849702

    Article  CAS  PubMed  Google Scholar 

  16. Trinchieri G, Sher A (2007) Cooperation of toll-like receptor signals in innate immune defence. Nat Rev Immunol 7(3):179–190. doi:10.1038/nri2038

    Article  CAS  PubMed  Google Scholar 

  17. Lehnardt S (2010) Innate immunity and neuroinflammation in the CNS: the role of microglia in toll-like receptor-mediated neuronal injury. Glia 58(3):253–263. doi:10.1002/glia.20928

    PubMed  Google Scholar 

  18. Akira S (2003) Mammalian toll-like receptors. Curr Opin Immunol 15(1):5–11

    Article  CAS  PubMed  Google Scholar 

  19. Arroyo DS, Soria JA, Gaviglio EA, Rodriguez-Galan MC, Iribarren P (2011) Toll-like receptors are key players in neurodegeneration. Int Immunopharmacol 11(10):1415–1421. doi:10.1016/j.intimp.2011.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Okun E, Griffioen KJ, Lathia JD, Tang SC, Mattson MP, Arumugam TV (2009) Toll-like receptors in neurodegeneration. Brain Res Rev 59(2):278–292. doi:10.1016/j.brainresrev.2008.09.001

    Article  CAS  PubMed  Google Scholar 

  21. Cai Z, Shi Z, Sanchez A, Zhang T, Liu M, Yang J, Wang F, Zhang D (2009) Transcriptional regulation of Tlr11 gene expression in epithelial cells. J Biol Chem 284(48):33088–33096. doi:10.1074/jbc.M109.050757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bird L (2005) A new ligand for TLR11. Nat Rev Immunol 5(432). doi:10.1038/nri1638

  23. Kawai T, Akira S (2009) The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol 21(4):317–337. doi:10.1093/intimm/dxp017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Loo YM, Gale M Jr (2011) Immune signaling by RIG-I-like receptors. Immunity 34(5):680–692. doi:10.1016/j.immuni.2011.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Asea A (2008) Heat shock proteins and toll-like receptors. Handb Exp Pharmacol 183:111–127. doi:10.1007/978-3-540-72167-3_6

    Article  CAS  Google Scholar 

  26. Shimada M, Yanai Y, Okazaki T, Noma N, Kawashima I, Mori T, Richards JS (2008) Hyaluronan fragments generated by sperm-secreted hyaluronidase stimulate cytokine/chemokine production via the TLR2 and TLR4 pathway in cumulus cells of ovulated COCs, which may enhance fertilization. Development 135(11):2001–2011. doi:10.1242/dev.020461

    Article  CAS  PubMed  Google Scholar 

  27. McGettrick AF, O’Neill LA (2004) The expanding family of MyD88-like adaptors in toll-like receptor signal transduction. Mol Immunol 41(6–7):577–582. doi:10.1016/j.molimm.2004.04.006

    Article  CAS  PubMed  Google Scholar 

  28. O’Neill LA, Fitzgerald KA, Bowie AG (2003) The toll-IL-1 receptor adaptor family grows to five members. Trends Immunol 24(6):286–290

    Article  PubMed  CAS  Google Scholar 

  29. Kawai T, Akira S (2007) TLR signaling. Semin Immunol 19(1):24–32. doi:10.1016/j.smim.2006.12.004

    Article  CAS  PubMed  Google Scholar 

  30. Lee MS, Kim YJ (2007) Signaling pathways downstream of pattern-recognition receptors and their cross talk. Annu Rev Biochem 76:447–480. doi:10.1146/annurev.biochem.76.060605.122847

    Article  CAS  PubMed  Google Scholar 

  31. Honda K, Taniguchi T (2006) IRFs: master regulators of signalling by toll-like receptors and cytosolic pattern-recognition receptors. Nat Rev Immunol 6(9):644–658. doi:10.1038/nri1900

    Article  CAS  PubMed  Google Scholar 

  32. Ikushima H, Negishi H, Taniguchi T (2013) The IRF family transcription factors at the interface of innate and adaptive immune responses. Cold Spring Harb Symp Quant Biol 78:105–116. doi:10.1101/sqb.2013.78.020321

    Article  PubMed  Google Scholar 

  33. Negishi H, Ohba Y, Yanai H, Takaoka A, Honma K, Yui K, Matsuyama T, Taniguchi T et al (2005) Negative regulation of toll-like-receptor signaling by IRF-4. Proc Natl Acad Sci U S A 102(44):15989–15994. doi:10.1073/pnas.0508327102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cooks T, Harris CC, Oren M (2014) Caught in the cross fire: p53 in inflammation. Carcinogenesis 35(8):1680–1690. doi:10.1093/carcin/bgu134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Johnson RF, Perkins ND (2012) Nuclear factor-kappaB, p53, and mitochondria: regulation of cellular metabolism and the Warburg effect. Trends Biochem Sci 37(8):317–324. doi:10.1016/j.tibs.2012.04.002

    Article  CAS  PubMed  Google Scholar 

  36. Perkins ND (2007) Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol 8(1):49–62. doi:10.1038/nrm2083

    Article  CAS  PubMed  Google Scholar 

  37. Schneider G, Henrich A, Greiner G, Wolf V, Lovas A, Wieczorek M, Wagner T, Reichardt S et al (2010) Cross talk between stimulated NF-kappaB and the tumor suppressor p53. Oncogene 29(19):2795–2806. doi:10.1038/onc.2010.46

    Article  CAS  PubMed  Google Scholar 

  38. Schumm K, Rocha S, Caamano J, Perkins ND (2006) Regulation of p53 tumour suppressor target gene expression by the p52 NF-kappaB subunit. EMBO J 25(20):4820–4832. doi:10.1038/sj.emboj.7601343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schafer T, Scheuer C, Roemer K, Menger MD, Vollmar B (2003) Inhibition of p53 protects liver tissue against endotoxin-induced apoptotic and necrotic cell death. FASEB J 17(6):660–667. doi:10.1096/fj.02-0774com

    Article  CAS  PubMed  Google Scholar 

  40. Armstrong MB, Bian X, Liu Y, Subramanian C, Ratanaproeksa AB, Shao F, Yu VC, Kwok RP et al (2006) Signaling from p53 to NF-kappaB determines the chemotherapy responsiveness of neuroblastoma. Neoplasia 8(11):967–977. doi:10.1593/neo.06574

    Article  CAS  PubMed  Google Scholar 

  41. Taura M, Eguma A, Suico MA, Shuto T, Koga T, Komatsu K, Komune T, Sato T et al (2008) p53 regulates toll-like receptor 3 expression and function in human epithelial cell lines. Mol Cell Biol 28(21):6557–6567. doi:10.1128/MCB.01202-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yamamoto M, Sato S, Hemmi H, Uematsu S, Hoshino K, Kaisho T, Takeuchi O, Takeda K et al (2003) TRAM is specifically involved in the toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat Immunol 4(11):1144–1150. doi:10.1038/ni986

    Article  CAS  PubMed  Google Scholar 

  43. Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, Golenbock DT, Coyle AJ, Liao SM et al (2003) IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 4(5):491–496. doi:10.1038/ni921

    Article  CAS  PubMed  Google Scholar 

  44. Sarkar SN, Peters KL, Elco CP, Sakamoto S, Pal S, Sen GC (2004) Novel roles of TLR3 tyrosine phosphorylation and PI3 kinase in double-stranded RNA signaling. Nat Struct Mol Biol 11(11):1060–1067. doi:10.1038/nsmb847

    Article  CAS  PubMed  Google Scholar 

  45. Trotta T, Porro C, Calvello R, Panaro MA (2014) Biological role of toll-like receptor-4 in the brain. J Neuroimmunol 268(1–2):1–12. doi:10.1016/j.jneuroim.2014.01.014

    Article  CAS  PubMed  Google Scholar 

  46. Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, Sanjo H, Takeuchi O, Sugiyama M et al (2003) Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301(5633):640–643. doi:10.1126/science.1087262

    Article  CAS  PubMed  Google Scholar 

  47. Covert MW, Leung TH, Gaston JE, Baltimore D (2005) Achieving stability of lipopolysaccharide-induced NF-kappaB activation. Science 309(5742):1854–1857. doi:10.1126/science.1112304

    Article  CAS  PubMed  Google Scholar 

  48. Barton GM, Kagan JC (2009) A cell biological view of toll-like receptor function: regulation through compartmentalization. Nat Rev Immunol 9(8):535–542. doi:10.1038/nri2587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chaturvedi A, Pierce SK (2009) How location governs toll-like receptor signaling. Traffic 10(6):621–628. doi:10.1111/j.1600-0854.2009.00899.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nogawa S, Forster C, Zhang F, Nagayama M, Ross ME, Iadecola C (1998) Interaction between inducible nitric oxide synthase and cyclooxygenase-2 after cerebral ischemia. Proc Natl Acad Sci U S A 95(18):10966–10971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhu Y, Zhu M, Lance P (2012) iNOS signaling interacts with COX-2 pathway in colonic fibroblasts. Exp Cell Res 318(16):2116–2127. doi:10.1016/j.yexcr.2012.05.027

    Article  CAS  PubMed  Google Scholar 

  52. Clancy R, Varenika B, Huang W, Ballou L, Attur M, Amin AR, Abramson SB (2000) Nitric oxide synthase/COX cross-talk: nitric oxide activates COX-1 but inhibits COX-2-derived prostaglandin production. J Immunol 165(3):1582–1587

    Article  CAS  PubMed  Google Scholar 

  53. Lucas K, Maes M (2013) Role of the toll like receptor (TLR) radical cycle in chronic inflammation: possible treatments targeting the TLR4 pathway. Mol Neurobiol 48(1):190–204. doi:10.1007/s12035-013-8425-7

    Article  CAS  PubMed  Google Scholar 

  54. Lafon M, Megret F, Lafage M, Prehaud C (2006) The innate immune facet of brain: human neurons express TLR-3 and sense viral dsRNA. J Mol Neurosci: MN 29(3):185–194. doi:10.1385/JMN:29:3:185

    Article  CAS  PubMed  Google Scholar 

  55. Cameron JS, Alexopoulou L, Sloane JA, DiBernardo AB, Ma Y, Kosaras B, Flavell R, Strittmatter SM et al (2007) Toll-like receptor 3 is a potent negative regulator of axonal growth in mammals. J Neurosci 27(47):13033–13041. doi:10.1523/JNEUROSCI.4290-06.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Farina C, Krumbholz M, Giese T, Hartmann G, Aloisi F, Meinl E (2005) Preferential expression and function of toll-like receptor 3 in human astrocytes. J Neuroimmunol 159(1–2):12–19. doi:10.1016/j.jneuroim.2004.09.009

    Article  CAS  PubMed  Google Scholar 

  57. Ma Y, Haynes RL, Sidman RL, Vartanian T (2007) TLR8: an innate immune receptor in brain, neurons and axons. Cell Cycle 6(23):2859–2868. doi:10.4161/cc.6.23.5018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tang SC, Arumugam TV, Xu X, Cheng A, Mughal MR, Jo DG, Lathia JD, Siler DA et al (2007) Pivotal role for neuronal toll-like receptors in ischemic brain injury and functional deficits. Proc Natl Acad Sci U S A 104(34):13798–13803. doi:10.1073/pnas.0702553104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. van Noort JM, Bsibsi M (2009) Toll-like receptors in the CNS: implications for neurodegeneration and repair. Prog Brain Res 175:139–148. doi:10.1016/S0079-6123(09)17509-X

    Article  PubMed  CAS  Google Scholar 

  60. Olson JK, Miller SD (2004) Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J Immunol 173(6):3916–3924

    Article  CAS  PubMed  Google Scholar 

  61. Farina C, Aloisi F, Meinl E (2007) Astrocytes are active players in cerebral innate immunity. Trends Immunol 28(3):138–145. doi:10.1016/j.it.2007.01.005

    Article  CAS  PubMed  Google Scholar 

  62. Gorina R, Font-Nieves M, Marquez-Kisinousky L, Santalucia T, Planas AM (2011) Astrocyte TLR4 activation induces a proinflammatory environment through the interplay between MyD88-dependent NFkappaB signaling, MAPK, and Jak1/Stat1 pathways. Glia 59(2):242–255. doi:10.1002/glia.21094

    Article  PubMed  Google Scholar 

  63. Berchtold NC, Cribbs DH, Coleman PD, Rogers J, Head E, Kim R, Beach T, Miller C et al (2008) Gene expression changes in the course of normal brain aging are sexually dimorphic. Proc Natl Acad Sci U S A 105(40):15605–15610. doi:10.1073/pnas.0806883105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Thomson CA, McColl A, Cavanagh J, Graham GJ (2014) Peripheral inflammation is associated with remote global gene expression changes in the brain. J Neuroinflammation 11:73. doi:10.1186/1742-2094-11-73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Scholtzova H, Kascsak RJ, Bates KA, Boutajangout A, Kerr DJ, Meeker HC, Mehta PD, Spinner DS et al (2009) Induction of toll-like receptor 9 signaling as a method for ameliorating Alzheimer’s disease-related pathology. J Neurosci 29(6):1846–1854. doi:10.1523/JNEUROSCI.5715-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bierhaus A, Humpert PM, Morcos M, Wendt T, Chavakis T, Arnold B, Stern DM, Nawroth PP (2005) Understanding RAGE, the receptor for advanced glycation end products. J Mol Med 83(11):876–886. doi:10.1007/s00109-005-0688-7

    Article  CAS  PubMed  Google Scholar 

  67. Zong H, Ward M, Stitt AW (2011) AGEs, RAGE, and diabetic retinopathy. Curr Diabetes Rep 11(4):244–252. doi:10.1007/s11892-011-0198-7

    Article  Google Scholar 

  68. Ding Q, Keller JN (2005) Evaluation of rage isoforms, ligands, and signaling in the brain. Biochim Biophys Acta 1746(1):18–27. doi:10.1016/j.bbamcr.2005.08.006

    Article  CAS  PubMed  Google Scholar 

  69. Xie J, Reverdatto S, Frolov A, Hoffmann R, Burz DS, Shekhtman A (2008) Structural basis for pattern recognition by the receptor for advanced glycation end products (RAGE). J Biol Chem 283(40):27255–27269. doi:10.1074/jbc.M801622200

    Article  CAS  PubMed  Google Scholar 

  70. Chuah YK, Basir R, Talib H, Tie TH, Nordin N (2013) Receptor for advanced glycation end products and its involvement in inflammatory diseases. Int J Inflamm 2013:403460. doi:10.1155/2013/403460

    Article  CAS  Google Scholar 

  71. Kierdorf K, Fritz G (2013) RAGE regulation and signaling in inflammation and beyond. J Leukoc Biol 94(1):55–68. doi:10.1189/jlb.1012519

    Article  CAS  PubMed  Google Scholar 

  72. Manigrasso MB, Pan J, Rai V, Zhang J, Reverdatto S, Quadri N, DeVita RJ, Ramasamy R et al (2016) Small molecule inhibition of ligand-stimulated RAGE-DIAPH1 signal transduction. Sci Rep 6:22450. doi:10.1038/srep22450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rai V, Maldonado AY, Burz DS, Reverdatto S, Yan SF, Schmidt AM, Shekhtman A (2012) Signal transduction in receptor for advanced glycation end products (RAGE): solution structure of C-terminal rage (ctRAGE) and its binding to mDia1. J Biol Chem 287(7):5133–5144. doi:10.1074/jbc.M111.277731

    Article  PubMed  CAS  Google Scholar 

  74. Xu Y, Toure F, Qu W, Lin L, Song F, Shen X, Rosario R, Garcia J et al (2010) Advanced glycation end product (AGE)-receptor for AGE (RAGE) signaling and up-regulation of Egr-1 in hypoxic macrophages. J Biol Chem 285(30):23233–23240. doi:10.1074/jbc.M110.117457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yan SF, Ramasamy R, Schmidt AM (2010) Soluble RAGE: therapy and biomarker in unraveling the RAGE axis in chronic disease and aging. Biochem Pharmacol 79(10):1379–1386. doi:10.1016/j.bcp.2010.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hudson BI, Kalea AZ, Del Mar AM, Harja E, Boulanger E, D’Agati V, Schmidt AM (2008) Interaction of the RAGE cytoplasmic domain with diaphanous-1 is required for ligand-stimulated cellular migration through activation of Rac1 and Cdc42. J Biol Chem 283(49):34457–34468. doi:10.1074/jbc.M801465200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fages C, Nolo R, Huttunen HJ, Eskelinen E, Rauvala H (2000) Regulation of cell migration by amphoterin. J Cell Sci 113(Pt 4):611–620

    CAS  PubMed  Google Scholar 

  78. Lander HM, Tauras JM, Ogiste JS, Hori O, Moss RA, Schmidt AM (1997) Activation of the receptor for advanced glycation end products triggers a p21(ras)-dependent mitogen-activated protein kinase pathway regulated by oxidant stress. J Biol Chem 272(28):17810–17814

    Article  CAS  PubMed  Google Scholar 

  79. Leclerc E, Fritz G, Weibel M, Heizmann CW, Galichet A (2007) S100B and S100A6 differentially modulate cell survival by interacting with distinct RAGE (receptor for advanced glycation end products) immunoglobulin domains. J Biol Chem 282(43):31317–31331. doi:10.1074/jbc.M703951200

    Article  CAS  PubMed  Google Scholar 

  80. Taguchi A, Blood DC, del Toro G, Canet A, Lee DC, Qu W, Tanji N, Lu Y et al (2000) Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature 405(6784):354–360. doi:10.1038/35012626

    Article  CAS  PubMed  Google Scholar 

  81. Yeh CH, Sturgis L, Haidacher J, Zhang XN, Sherwood SJ, Bjercke RJ, Juhasz O, Crow MT et al (2001) Requirement for p38 and p44/p42 mitogen-activated protein kinases in RAGE-mediated nuclear factor-kappaB transcriptional activation and cytokine secretion. Diabetes 50(6):1495–1504

    Article  CAS  PubMed  Google Scholar 

  82. Park SW, Kim JH, Park SM, Moon M, Lee KH, Park KH, Park WJ, Kim JH (2015) RAGE mediated intracellular Abeta uptake contributes to the breakdown of tight junction in retinal pigment epithelium. Oncotarget 6(34):35263–35273. doi:10.18632/oncotarget.5894

    Article  PubMed  PubMed Central  Google Scholar 

  83. Takuma K, Fang F, Zhang W, Yan S, Fukuzaki E, Du H, Sosunov A, McKhann G et al (2009) RAGE-mediated signaling contributes to intraneuronal transport of amyloid-beta and neuronal dysfunction. Proc Natl Acad Sci U S A 106(47):20021–20026. doi:10.1073/pnas.0905686106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Huttunen HJ, Fages C, Rauvala H (1999) Receptor for advanced glycation end products (RAGE)-mediated neurite outgrowth and activation of NF-kappaB require the cytoplasmic domain of the receptor but different downstream signaling pathways. J Biol Chem 274(28):19919–19924

    Article  CAS  PubMed  Google Scholar 

  85. Bianchi R, Kastrisianaki E, Giambanco I, Donato R (2011) S100B protein stimulates microglia migration via RAGE-dependent up-regulation of chemokine expression and release. J Biol Chem 286(9):7214–7226. doi:10.1074/jbc.M110.169342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lin L, Park S, Lakatta EG (2009) RAGE signaling in inflammation and arterial aging. Front Biosci 14:1403–1413

    Article  CAS  Google Scholar 

  87. Riehl A, Nemeth J, Angel P, Hess J (2009) The receptor RAGE: bridging inflammation and cancer. Cell Commun Signal CCS 7:12. doi:10.1186/1478-811X-7-12

    Article  PubMed  CAS  Google Scholar 

  88. Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ (2010) HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol 28:367–388. doi:10.1146/annurev.immunol.021908.132603

    Article  CAS  PubMed  Google Scholar 

  89. Piras S, Furfaro AL, Domenicotti C, Traverso N, Marinari UM, Pronzato MA, Nitti M (2016) RAGE expression and ROS generation in neurons: differentiation versus damage. Oxidative Med Cell Longev 2016:9348651. doi:10.1155/2016/9348651

    Article  CAS  Google Scholar 

  90. Sorci G, Riuzzi F, Giambanco I, Donato R (2013) RAGE in tissue homeostasis, repair and regeneration. Biochim Biophys Acta 1833(1):101–109. doi:10.1016/j.bbamcr.2012.10.021

    Article  CAS  PubMed  Google Scholar 

  91. Lue LF, Walker DG, Brachova L, Beach TG, Rogers J, Schmidt AM, Stern DM, Yan SD (2001) Involvement of microglial receptor for advanced glycation endproducts (RAGE) in Alzheimer’s disease: identification of a cellular activation mechanism. Exp Neurol 171(1):29–45. doi:10.1006/exnr.2001.7732

    Article  CAS  PubMed  Google Scholar 

  92. Miller MC, Tavares R, Johanson CE, Hovanesian V, Donahue JE, Gonzalez L, Silverberg GD, Stopa EG (2008) Hippocampal RAGE immunoreactivity in early and advanced Alzheimer’s disease. Brain Res 1230:273–280. doi:10.1016/j.brainres.2008.06.124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sasaki N, Toki S, Chowei H, Saito T, Nakano N, Hayashi Y, Takeuchi M, Makita Z (2001) Immunohistochemical distribution of the receptor for advanced glycation end products in neurons and astrocytes in Alzheimer’s disease. Brain Res 888(2):256–262

    Article  CAS  PubMed  Google Scholar 

  94. Hori O, Brett J, Slattery T, Cao R, Zhang J, Chen JX, Nagashima M, Lundh ER et al (1995) The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co-expression of rage and amphoterin in the developing nervous system. J Biol Chem 270(43):25752–25761

    Article  CAS  PubMed  Google Scholar 

  95. Rong LL, Yan SF, Wendt T, Hans D, Pachydaki S, Bucciarelli LG, Adebayo A, Qu W et al (2004) RAGE modulates peripheral nerve regeneration via recruitment of both inflammatory and axonal outgrowth pathways. FASEB J 18(15):1818–1825. doi:10.1096/fj.04-1900com

    Article  CAS  PubMed  Google Scholar 

  96. Srikanth V, Maczurek A, Phan T, Steele M, Westcott B, Juskiw D, Munch G (2011) Advanced glycation endproducts and their receptor RAGE in Alzheimer’s disease. Neurobiol Aging 32(5):763–777. doi:10.1016/j.neurobiolaging.2009.04.016

    Article  CAS  PubMed  Google Scholar 

  97. Takeuchi M, Yamagishi S (2008) Possible involvement of advanced glycation end-products (AGEs) in the pathogenesis of Alzheimer’s disease. Curr Pharm Des 14(10):973–978

    Article  CAS  PubMed  Google Scholar 

  98. Vistoli G, De Maddis D, Cipak A, Zarkovic N, Carini M, Aldini G (2013) Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation. Free Radic Res 47(Suppl 1):3–27. doi:10.3109/10715762.2013.815348

    Article  CAS  PubMed  Google Scholar 

  99. Choi BR, Cho WH, Kim J, Lee HJ, Chung C, Jeon WK, Han JS (2014) Increased expression of the receptor for advanced glycation end products in neurons and astrocytes in a triple transgenic mouse model of Alzheimer’s disease. Exp Mol Med 46:e75. doi:10.1038/emm.2013.147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Donahue JE, Flaherty SL, Johanson CE, Duncan JA 3rd, Silverberg GD, Miller MC, Tavares R, Yang W et al (2006) RAGE, LRP-1, and amyloid-beta protein in Alzheimer’s disease. Acta Neuropathol 112(4):405–415. doi:10.1007/s00401-006-0115-3

    Article  CAS  PubMed  Google Scholar 

  101. Girones X, Guimera A, Cruz-Sanchez CZ, Ortega A, Sasaki N, Makita Z, Lafuente JV, Kalaria R et al (2004) N epsilon-carboxymethyllysine in brain aging, diabetes mellitus, and Alzheimer’s disease. Free Radic Biol Med 36(10):1241–1247. doi:10.1016/j.freeradbiomed.2004.02.006

    Article  CAS  PubMed  Google Scholar 

  102. Vazzana N, Santilli F, Cuccurullo C, Davi G (2009) Soluble forms of RAGE in internal medicine. Intern Emerg Med 4(5):389–401. doi:10.1007/s11739-009-0300-1

    Article  PubMed  Google Scholar 

  103. Qin J, Goswami R, Dawson S, Dawson G (2008) Expression of the receptor for advanced glycation end products in oligodendrocytes in response to oxidative stress. J Neurosci Res 86(11):2414–2422. doi:10.1002/jnr.21692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Emanuele E, D’Angelo A, Tomaino C, Binetti G, Ghidoni R, Politi P, Bernardi L, Maletta R et al (2005) Circulating levels of soluble receptor for advanced glycation end products in Alzheimer disease and vascular dementia. Arch Neurol 62(11):1734–1736. doi:10.1001/archneur.62.11.1734

    Article  PubMed  Google Scholar 

  105. Chen X, Walker DG, Schmidt AM, Arancio O, Lue LF, Yan SD (2007) RAGE: a potential target for abeta-mediated cellular perturbation in Alzheimer’s disease. Curr Mol Med 7(8):735–742

    Article  CAS  PubMed  Google Scholar 

  106. Schmidt AM, Sahagan B, Nelson RB, Selmer J, Rothlein R, Bell JM (2009) The role of RAGE in amyloid-beta peptide-mediated pathology in Alzheimer’s disease. Curr Opin Investig Drugs 10(7):672–680

    CAS  PubMed  Google Scholar 

  107. Yan SS, Chen D, Yan S, Guo L, Du H, Chen JX (2012) RAGE is a key cellular target for Abeta-induced perturbation in Alzheimer’s disease. Front Biosci (Schol Ed) 4:240–250

    Article  Google Scholar 

  108. Li XH, Lv BL, Xie JZ, Liu J, Zhou XW, Wang JZ (2012) AGEs induce Alzheimer-like tau pathology and memory deficit via RAGE-mediated GSK-3 activation. Neurobiol Aging 33(7):1400–1410. doi:10.1016/j.neurobiolaging.2011.02.003

    Article  PubMed  CAS  Google Scholar 

  109. Xie J, Mendez JD, Mendez-Valenzuela V, Aguilar-Hernandez MM (2013) Cellular signalling of the receptor for advanced glycation end products (RAGE). Cell Signal 25(11):2185–2197. doi:10.1016/j.cellsig.2013.06.013

    Article  CAS  PubMed  Google Scholar 

  110. Cai Z, Liu N, Wang C, Qin B, Zhou Y, Xiao M, Chang L, Yan LJ et al (2016) Role of RAGE in Alzheimer’s disease. Cell Mol Neurobiol 36(4):483–495. doi:10.1007/s10571-015-0233-3

    Article  CAS  PubMed  Google Scholar 

  111. Villarreal A, Seoane R, Gonzalez Torres A, Rosciszewski G, Angelo MF, Rossi A, Barker PA, Ramos AJ (2014) S100B protein activates a RAGE-dependent autocrine loop in astrocytes: implications for its role in the propagation of reactive gliosis. J Neurochem 131(2):190–205. doi:10.1111/jnc.12790

    Article  CAS  PubMed  Google Scholar 

  112. Guglielmotto M, Aragno M, Tamagno E, Vercellinatto I, Visentin S, Medana C, Catalano MG, Smith MA et al (2012) AGEs/RAGE complex upregulates BACE1 via NF-kappaB pathway activation. Neurobiol Aging 33(1):196 e113–196 e127. doi:10.1016/j.neurobiolaging.2010.05.026

    Article  CAS  Google Scholar 

  113. Sakaguchi M, Murata H, Yamamoto K, Ono T, Sakaguchi Y, Motoyama A, Hibino T, Kataoka K et al (2011) TIRAP, an adaptor protein for TLR2/4, transduces a signal from RAGE phosphorylated upon ligand binding. PLoS One 6(8):e23132. doi:10.1371/journal.pone.0023132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ishihara K, Tsutsumi K, Kawane S, Nakajima M, Kasaoka T (2003) The receptor for advanced glycation end-products (RAGE) directly binds to ERK by a D-domain-like docking site. FEBS Lett 550(1–3):107–113

    Article  CAS  PubMed  Google Scholar 

  115. Ibrahim ZA, Armour CL, Phipps S, Sukkar MB (2013) RAGE and TLRs: relatives, friends or neighbours? Mol Immunol 56(4):739–744. doi:10.1016/j.molimm.2013.07.008

    Article  CAS  PubMed  Google Scholar 

  116. van Beijnum JR, Buurman WA, Griffioen AW (2008) Convergence and amplification of toll-like receptor (TLR) and receptor for advanced glycation end products (RAGE) signaling pathways via high mobility group B1 (HMGB1). Angiogenesis 11(1):91–99. doi:10.1007/s10456-008-9093-5

    Article  CAS  PubMed  Google Scholar 

  117. Yamamoto Y, Yamamoto H (2013) RAGE-mediated inflammation, type 2 diabetes, and diabetic vascular complication. Front Endocrinol 4:105. doi:10.3389/fendo.2013.00105

    Article  Google Scholar 

  118. Kubo-Murai M, Hazeki K, Sukenobu N, Yoshikawa K, Nigorikawa K, Inoue K, Yamamoto T, Matsumoto M et al (2007) Protein kinase Cdelta binds TIRAP/Mal to participate in TLR signaling. Mol Immunol 44(9):2257–2264. doi:10.1016/j.molimm.2006.11.005

    Article  CAS  PubMed  Google Scholar 

  119. Loegering DJ, Lennartz MR (2011) Protein kinase C and toll-like receptor signaling. Enzyme Res 2011:537821. doi:10.4061/2011/537821

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Shen Y, Kawamura I, Nomura T, Tsuchiya K, Hara H, Dewamitta SR, Sakai S, Qu H et al (2010) Toll-like receptor 2- and MyD88-dependent phosphatidylinositol 3-kinase and Rac1 activation facilitates the phagocytosis of Listeria monocytogenes by murine macrophages. Infect Immun 78(6):2857–2867. doi:10.1128/IAI.01138-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Fan H, Sun B, Gu Q, Lafond-Walker A, Cao S, Becker LC (2002) Oxygen radicals trigger activation of NF-kappaB and AP-1 and upregulation of ICAM-1 in reperfused canine heart. Am J Phys Heart Circ Phys 282(5):H1778–H1786. doi:10.1152/ajpheart.00796.2000

    CAS  Google Scholar 

  122. Karin M, Takahashi T, Kapahi P, Delhase M, Chen Y, Makris C, Rothwarf D, Baud V et al (2001) Oxidative stress and gene expression: the AP-1 and NF-kappaB connections. Bio Factors 15(2–4):87–89

    CAS  Google Scholar 

  123. Shihab PK, Al-Roub A, Al-Ghanim M, Al-Mass A, Behbehani K, Ahmad R (2015) TLR2 and AP-1/NF-kappaB are involved in the regulation of MMP-9 elicited by heat killed Listeria monocytogenes in human monocytic THP-1 cells. J Inflamm 12:32. doi:10.1186/s12950-015-0077-0

    Article  CAS  Google Scholar 

  124. West AP, Brodsky IE, Rahner C, Woo DK, Erdjument-Bromage H, Tempst P, Walsh MC, Choi Y et al (2011) TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472(7344):476–480. doi:10.1038/nature09973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Dekker LV, Leitges M, Altschuler G, Mistry N, McDermott A, Roes J, Segal AW (2000) Protein kinase C-beta contributes to NADPH oxidase activation in neutrophils. Biochem J 347(Pt 1):285–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerzy Leszek.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gąsiorowski, K., Brokos, B., Echeverria, V. et al. RAGE-TLR Crosstalk Sustains Chronic Inflammation in Neurodegeneration. Mol Neurobiol 55, 1463–1476 (2018). https://doi.org/10.1007/s12035-017-0419-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0419-4

Keywords

Navigation