Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 183))

Researchers have only just begun to elucidate the relationship between heat shock proteins (HSP) and Toll-like receptors (TLR). HSP were originally described as an intracellular molecular chaperone of naïve, aberrantly folded, or mutated proteins and primarily implicated as a cytoprotective protein when cells are exposed to stressful stimuli. However, recent studies have ascribed novel functions to the Hsp70 protein depending on its localization: Surface-bound Hsp70 specifically activate natural killer (NK) cells, while Hsp70 released into the extracellular milieu specifically bind to Toll-like receptors (TLR) 2 and 4 on antigen-presenting cells (APC) and exerts immunoregulatory effects, including upregulation of adhesion molecules, co-stimulatory molecule expression, and cytokine and chemokine release—a process known as the chaperokine activity of Hsp70. This chapter discusses the most recent advances in the understanding of heat shock protein (HSP) and TLR interactions in general and highlights recent findings that demonstrate Hsp70 is a ligand for TLR and its biological significance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aderem A, Ulevitch RJ (2000) Toll-like receptors in the induction of the innate immune response. Nature 406: 782-787

    Article  CAS  PubMed  Google Scholar 

  • Adewoye AH, Klings ES Farber HW, Palaima E, Bausero MA, McMahon L, Odhiambo A, Surinder S, Yoder M, Steinberg MH, Asea A (2005) Sickle cell vaso-occlusive crisis induces the release of circulating serum heat shock protein-70. Am J Hematol 78: 240-242

    Article  CAS  PubMed  Google Scholar 

  • Anderson KV (2000) Toll signaling pathways in the innate immune response. Curr Opin Immunol 12: 13-19

    Article  CAS  PubMed  Google Scholar 

  • Aosai F, Chen M, Kang HK, Mun HS, Norose K, Piao LX, Kobayashi M, Takeuchi O, Akira S, Yano A (2002) Toxoplasma gondii-derived heat shock protein HSP70 functions as a B cell mitogen. Cell Stress Chaperones 7: 357-364

    Article  CAS  PubMed  Google Scholar 

  • Arnold-Schild D, Hanau D, Spehner D, Schmid C, Rammensee HG, de la Salle H, Schild H (1999) Receptor-mediated endocytosis of heat shock proteins by professional antigen-presenting cells. J Immunol 162: 3757-3760

    CAS  PubMed  Google Scholar 

  • Asea A (2003) Chaperokine-induced signal transduction pathways. Exerc Immunol Rev 9: 25-33

    PubMed  Google Scholar 

  • Asea A (2005) Stress proteins and initiation of immune response: chaperokine activity of hsp72. Exerc Immunol Rev 11: 34-45

    PubMed  Google Scholar 

  • Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, Koo GC, Calderwood SK (2000a) HSP70 stimulates cytokine production through a CD14-dependent pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6: 435-442

    Article  CAS  Google Scholar 

  • Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, Koo GC, Calderwood SK (2000b) HSP70 stimulates cytokine production through a CD14-dependent pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6: 435-442

    Article  CAS  Google Scholar 

  • Asea A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE, Stevenson MA, Calderwood SK (2002a) Novel signal transduction pathway utilized by extracellular HSP70: Role of Toll-like receptor (TLR) 2 and TLR4. J Biol Chem 277: 15028-15034

    Article  CAS  Google Scholar 

  • Asea A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE, Stevenson MA, Calderwood SK (2002b) Novel signal transduction pathway utilized by extracellular HSP70: Role of Toll-like receptor (TLR) 2 and TLR4. J Biol Chem 277: 15028-15034

    Article  CAS  Google Scholar 

  • Baeuerle PA, Baltimore D (1988) I kappa B: A specific inhibitor of the NF-kappa B transcription factor. Science 242: 540-546

    Article  CAS  PubMed  Google Scholar 

  • Barreto A, Gonzalez JM, Kabingu E, Asea A, Fiorentino S (2003) Stress-induced release of HSC70 from human tumors. Cell Immunol 222: 97-104

    Article  CAS  PubMed  Google Scholar 

  • Basu S, Binder RJ, Suto R, Anderson KM, Srivastava PK (2000) Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol 12: 1539-1546

    Article  CAS  PubMed  Google Scholar 

  • Basu S, Srivastava PK (2000) Heat shock proteins: The fountainhead of innate and adaptive immune responses. Cell Stress Chaperones 5: 443-451

    Article  CAS  PubMed  Google Scholar 

  • Bausero MA, Gastpar R, Multhoff G, Asea A (2005a) Alternative mechanism by which IFN{gamma} enhances tumor recognition: Active release of heat shock protein 72. J Immunol 175: 2900-2912

    CAS  Google Scholar 

  • Bausero MA, Gastpar R, Multhoff G, Asea A (2005b) Alternative mechanism by which IFNgamma enhances tumor recognition: Active release of heat shock protein 72. J Immunol 175: 2900-2912

    CAS  Google Scholar 

  • Beere HM (2004) ‘The stress of dying’: The role of heat shock proteins in the regulation of apoptosis. J Cell Sci 117: 2641-2651

    Article  CAS  PubMed  Google Scholar 

  • Botzler C, Issels R, Multhoff G (1996) Heat-shock protein 72 cell-surface expression on human lung carcinoma cells in associated with an increased sensitivity to lysis mediated by adherent natural killer cells. Cancer Immunol Immunother 43: 226-230

    Article  CAS  PubMed  Google Scholar 

  • Botzler C, Li G, Issels RD, Multhoff G (1998a) Definition of extracellular localized epitopes of Hsp70 involved in an NK immune response. Cell Stress Chaperones 3: 6-11

    Article  CAS  Google Scholar 

  • Botzler C, Schmidt J, Luz A, Jennen L, Issels R, Multhoff G (1998b) Differential Hsp70 plasmamembrane expression on primary human tumors and metastases in mice with severe combined immunodeficiency. Int J Cancer 77: 942-948

    Article  CAS  Google Scholar 

  • Breloer M, Dorner B, More SH, Roderian T, Fleischer B, von Bonin A (2001) Heat shock proteins as “danger signals”: Eukaryotic Hsp60 enhances and accelerates antigen-specific IFN-gamma production in T cells. Eur J Immunol 31: 2051-2059

    Article  CAS  PubMed  Google Scholar 

  • Cahill CM, Waterman WR, Auron PE, Calderwood SK (1996) Transcriptional repression of the prointerleukin1B gene by heat shock factor 1. J Biol Chem 271: 24874-24879

    CAS  PubMed  Google Scholar 

  • Calderwood SK (2005) Chaperones and slow death—A recipe for tumor immunotherapy. Trends Biotechnol 23: 57-59

    Article  CAS  PubMed  Google Scholar 

  • Caron G, Duluc D, Fremaux I, Jeannin P, David C, Gascan H, Delneste Y (2005) Direct stimulation of human T cells via TLR5 and TLR7/8: Flagellin and R-848 up-regulate proliferation and IFNgamma production by memory CD4 + T cells. J Immunol 175: 1551-1557

    CAS  PubMed  Google Scholar 

  • Chen M, Aosai F, Norose K, Mun HS, Takeuchi O, Akira S, Yano A (2002) Involvement of MyD88 in host defense and the down-regulation of anti-heat shock protein 70 autoantibody formation by MyD88 in Toxoplasma gondii-infected mice. J Parasitol 88: 1017-1019

    CAS  PubMed  Google Scholar 

  • Chu B, Soncin F, Price BD, Stevenson MA, Calderwood SK (1996) Sequential phosphorylation by mitogen-activated protein kinase and glycogen synthase kinase 3 represses transcriptional activation by heat shock factor-1. J Biol Chem 271: 30847-30857

    Article  CAS  PubMed  Google Scholar 

  • Chu B, Zhong R, Soncin F, Stevenson MA, Calderwood SK (1998) Transcriptional activity of heat shock factor 1 at 37C is repressed through phosphorylation on two distinct serine residues by glycogen synthase kinase 3 and protein kinase C a and Cz. J Biol Chem. 273: 18640-18646

    Article  CAS  PubMed  Google Scholar 

  • Clayton A, Turkes A, Navabi H, Mason MD, Tabi Z (2005) Induction of heat shock proteins in B-cell exosomes. J Cell Sci 118: 3631-3638

    Article  CAS  PubMed  Google Scholar 

  • Cohen-Sfady M, Nussbaum G, Pevsner-Fischer M, Mor F, Carmi P, Zanin-Zhorov A, Lider O, Cohen IR (2005) Heat shock protein 60 activates B cells via the TLR4-MyD88 pathway. J Immunol 175: 3594-3602

    CAS  PubMed  Google Scholar 

  • Craig EA, Gross CA (1991) Is hsp70 the cellular thermometer? Trends Biochem Sci 16: 135-140

    Article  CAS  PubMed  Google Scholar 

  • Delneste Y, Magistrelli G, Gauchat J, Haeuw J, Aubry J, Nakamura K, Kawakami-Honda N, Goetsch L, Sawamura T, Bonnefoy J, Jeannin P (2002) Involvement of LOX-1 in dendritic cell-mediated antigen cross-presentation. Immunity 17: 353-362

    Article  CAS  PubMed  Google Scholar 

  • Dybdahl B, Slordahl SA, Waage A, Kierulf P, Espevik T, Sundan A (2005) Myocardial ischaemia and the inflammatory response: Release of heat shock protein 70 after myocardial infarction. Heart 91: 299-304

    Article  CAS  PubMed  Google Scholar 

  • Dybdahl B, Wahba A, Haaverstad R, Kirkeby-Garstad I, Kierulf P, Espevik T, Sundan A (2004) Onpump versus off-pump coronary artery bypass grafting: More heat-shock protein 70 is released after on-pump surgery. Eur J Cardiothorac Surg 25: 985-992

    Article  PubMed  Google Scholar 

  • Dybdahl B, Wahba A, Lien E, Flo TH, Waage A, Qureshi N, Sellevold OF, Espevik T, Sundan A (2002) Inflammatory response after open heart surgery: Release of heat-shock protein 70 and signaling through Toll-like receptor-4. Circulation 105: 685-690

    Article  CAS  PubMed  Google Scholar 

  • Escola JM, Kleijmeer MJ, Stoorvogel W, Griffith JM, Yoshie O, Geuze HJ (1998) Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. J Biol Chem 273: 20121-20127

    Article  CAS  PubMed  Google Scholar 

  • Fearon DT, Locksley RM (1996) The instructive role of innate immunity in the acquired immune response. Science 272: 50-53

    Article  CAS  PubMed  Google Scholar 

  • Fleshner M, Campisi J, Amiri L, Diamond DM (2004) Cat exposure induces both intra- and extracellular Hsp72: The role of adrenal hormones. Psychoneuroendocrinol 29: 1142-1152

    Article  CAS  Google Scholar 

  • Gallucci S, Lolkema M, Matzinger P (1999) Natural adjuvants: Endogenous activators of dendritic cells. Nat Med 5: 1249-1255

    Article  CAS  PubMed  Google Scholar 

  • Gastpar R, Gehrmann M, Bausero MA, Asea A, Gross C, Schroeder JA, Multhoff G (2005) Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Res 65: 5238-5247

    Article  CAS  PubMed  Google Scholar 

  • Gehrmann M, Schmetzer H, Eissner G, Haferlach T, Hiddemann W, Multhoff G (2003) Membranebound heat shock protein 70 (Hsp70) in acute myeloid leukemia: A tumor specific recognition structure for the cytolytic activity of autologous NK cells. Haematolog 88: 474-476

    Google Scholar 

  • Gelman AE, Zhang J, Choi Y, Turka LA (2004) Toll-like receptor ligands directly promote activated CD4 + T cell survival. J Immunol 172: 6065-6073

    CAS  PubMed  Google Scholar 

  • Georgopolis C, Welch WJ (1993) Role of the major heat shock proteins as molecular chaperones. Ann Rev Cell Biol 9: 601-634

    Google Scholar 

  • Gross C, Hansch D, Gastpar R, Multhoff G (2003) Interaction of heat shock protein 70 peptide with NK cells involves the NK receptor CD94. Biol Chem 384: 267-279

    Article  CAS  PubMed  Google Scholar 

  • Guzhova I, Kislyakova K, Moskaliova O, Fridlanskaya I, Tytell M, Cheetham M, Margulis B (2001) In vitro studies show that Hsp70 can be released by glia and that exogenous Hsp70 can enhance neuronal stress tolerance. Brain Res 914: 66-73

    Article  CAS  PubMed  Google Scholar 

  • Hantschel M, Pfister K, Jordan A, Scholz R, Andreesen R, Schmitz G, Schmetzer H, Hiddemann W, Multhoff G (2000) Hsp70 plasma membrane expression on primary tumor biopsy material and bone marrow of leukemic patients. Cell Stress Chaperones 5: 438-442

    Article  CAS  PubMed  Google Scholar 

  • He H, Soncin F, Grammatikakis N, Li Y, Siganou A, Gong J, Brown SA, Kingston RE, Calderwood SK (2003) Elevated expression of heat shock factor 2a stimulates HSF1-induced transcription during stress. J Biol Chem 278: 35465-35475

    Article  CAS  PubMed  Google Scholar 

  • Hensold JO, Hunt CR, Calderwood SK, Houseman DE, Kingston RE (1990) DNA binding of heat shock factor to the heat shock element is insufficient for transcriptional activation in murine erythroleukemia cells. Mol Cell Biol 10: 1600-1608

    CAS  PubMed  Google Scholar 

  • Housby JN, Cahill CM, Chu B, Prevelige R, Bickford K, Stevenson MA, Calderwood SK (1999) Non-steroidal anti-inflammatory drugs inhibit the expression of cytokines and induce HSP70 in human monocytes. Cytokine 11: 347-358

    Article  CAS  PubMed  Google Scholar 

  • Hunter-Lavin C, Davies EL, Bacelar MM, Marshall MJ, Andrew SM, Williams JH (2004) Hsp70 release from peripheral blood mononuclear cells. Biochem Biophys Res Commun 324: 511-517

    Article  CAS  PubMed  Google Scholar 

  • Hut HM, Kampinga HH, Sibon OC (2005) Hsp70 protects mitotic cells against heat-induced centrosome damage and division abnormalities. Mol Biol Cell 16: 3776-3785

    Article  CAS  PubMed  Google Scholar 

  • Jaattela M, Wissing D, Kokholm K, Kallunki T, Egeblad M (1998) Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases. EMBO J 17: 6124-6134

    Article  CAS  PubMed  Google Scholar 

  • Janeway CAJ (1999) Lipoproteins tale their toll on the host. Curr Biol 9, R879-R882

    Article  CAS  PubMed  Google Scholar 

  • Kampinga HH, Brunsting JF, Stege GJ, Burgman PW, Konings AW (1995) Thermal protein denaturation and protein aggregation in cells made thermotolerant by various chemicals: Role of heat shock proteins. Exp Cell Res 219: 536-546

    Article  CAS  PubMed  Google Scholar 

  • Kampinga HH, Brunsting JF, Stege GJ, Konings AW, Landry J (1994) Cells overexpressing Hsp27 show accelerated recovery from heat-induced nuclear protein aggregation. Biochem Biophys Res Commun 204: 1170-1177

    Article  CAS  PubMed  Google Scholar 

  • Klein PS, Melton DA (1996) A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci USA 93: 8455-8459

    Article  CAS  PubMed  Google Scholar 

  • Knauf U, Newton EM, Kyriakis J, Kingston RE (1996) Repression of heat shock factor 1 activity at control temperature by phosphorylation. Genes Dev 10: 2782-2793

    Article  CAS  PubMed  Google Scholar 

  • Komai-Koma M, Jones L, Ogg GS, Xu D, Liew FY (2004) TLR2 is expressed on activated T cells as a costimulatory receptor. Proc Natl Acad Sci USA 101: 3029-3034

    Article  CAS  PubMed  Google Scholar 

  • Kopp EB, Medzhitov R (1999) The Toll-receptor family and control of innate immunity. Curr Opin Immunol 11: 13-18

    Article  CAS  PubMed  Google Scholar 

  • Lancaster GI, Febbraio MA (2005) Exosome-dependent trafficking of HSP70: A novel secretory pathway for cellular stress proteins. J Biol Chem 280: 23349-23355

    Article  CAS  PubMed  Google Scholar 

  • Lehner T, Bergmeier LA, Wang Y, Tao L, Sing M, Spallek R, van der Zee R (2000) Heat shock proteins generate beta-chemokines which function as innate adjuvants enhancing adaptive immunity. Eur J Immunol 30: 594-603

    Article  CAS  PubMed  Google Scholar 

  • Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA (1996) The dorsoventral regulatory gene cassette Sp ätzle/Toll/Cactus controls the potent antifungal response in Drosophila adults. Cell 86: 973-983

    Article  CAS  PubMed  Google Scholar 

  • Lindquist S (1986) The heat-shock response. Ann Rev Biochem 55: 1151-1191

    Article  CAS  PubMed  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat shock proteins. Ann Rev Genet 22: 631-637

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Dai J, Zheng H, Stoilova D, Sun S, Li Z (2003) Cell surface expression of an endoplasmic reticulum resident heat shock protein gp96 triggers MyD88-dependent systemic autoimmune diseases. Proc Natl Acad Sci USA 100: 15824-15829

    Article  CAS  PubMed  Google Scholar 

  • MacAry PA, Javid B, Floto RA, Smith KG, Oehlmann W, Singh M, Lehner PJ (2004) HSP70 peptide binding mutants separate antigen delivery from dendritic cell stimulation. Immunity 20: 95-106

    Article  CAS  PubMed  Google Scholar 

  • Manjili MH, Park J, Facciponte G, Subjeck JR (2005) HSP110 induces “danger signals” upon interaction with antigen presenting cells and mouse mammary carcinoma. Immunobiol 210: 295-303

    Article  CAS  Google Scholar 

  • McLeish KR, Dean WL, Wellhausen SR, Stelzer GT (1989) Role of intracellular calcium in priming of human peripheral blood monocytes by bacterial lipopolysaccharide. Inflammation 13: 681-692

    Article  CAS  PubMed  Google Scholar 

  • Medzhitov R, Janeway CAJ (1997) Innate immunity: Impact on the adaptive immune response. Curr Opin Immunol 9: 4-9

    Article  CAS  PubMed  Google Scholar 

  • Medzhitov R, Preston-Hurlburt P, Janeway CA, Jr (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388: 394-397

    Article  CAS  PubMed  Google Scholar 

  • Melcher A, Todryk S, Hardwick N, Ford M, Jacobson M, Vile RG (1998) Tumor immunogenicity is determined by the mechanism of cell death via induction of heat shock protein expression. Nat Med 4: 581-587

    Article  CAS  PubMed  Google Scholar 

  • Millar DG, Garza KM, Odermatt B, Elford AR, Ono N, Li Z, Ohashi PS (2003) Hsp70 promotes antigen-presenting cell function and converts T-cell tolerance to autoimmunity in vivo. Nat Med 9: 1469-1476

    Article  CAS  PubMed  Google Scholar 

  • Moehler MH, Zeidler M, Wilsberg V, Cornelis JJ, Woelfel T, Rommelaere J, Galle PR, Heike M (2005) Parvovirus H-1-induced tumor cell death enhances human immune response in vitro via increased phagocytosis, maturation, and cross-presentation by dendritic cells. Hum Gene Ther 16: 996-1005

    Article  CAS  PubMed  Google Scholar 

  • More SH, Breloer M, von Bonin A (2001) Eukaryotic heat shock proteins as molecular links in innate and adaptive immune responses: Hsp60-mediated activation of cytotoxic T cells. Int Immunol 13: 1121-1127

    Article  CAS  PubMed  Google Scholar 

  • Multhoff G, Botzler C, Jennen L, Schmidt J, Ellwart J, Issels R (1997) Heat shock protein 72 on tumor cells: A recognition structure for natural killer cells. J Immunol 158: 4341-4350

    CAS  PubMed  Google Scholar 

  • Multhoff G, Botzler C, Wiesnet M, Eissner G, Issels R (1995) CD3-large granular lymphocytes recognize a heat-inducible immunogenic determinant associated with the 72-kD heat shock protein on human sarcoma cells. Blood 86: 1374-1382

    CAS  PubMed  Google Scholar 

  • Multhoff G, Hightower LE (1996) Cell surface expression of heat shock proteins and the immune response. Cell Stress Chaperones 1: 167-176

    Article  CAS  PubMed  Google Scholar 

  • Multhoff G, Mizzen L, Winchester CC, Milner CM, Wenk S, Eissner G, Kampinga HH, Laumbacher B, Johnson J (1999) Heat shock protein 70 (Hsp70) stimulates proliferation and cytolytic activity of natural killer cells. Exp Hematol 27: 1627-1636

    Article  CAS  PubMed  Google Scholar 

  • Multhoff G, Pfister K, Gehrmann M, Hantschel M, Gross C, Hafner M, Hiddemann W (2001) A 14-mer Hsp70 peptide stimulates natural killer (NK) cell activity. Cell Stress Chaperones 6: 337-344

    Article  CAS  PubMed  Google Scholar 

  • Muzio M, Mantovani A (2000) Toll-like receptors. Microbes Infect 2: 251-255

    Article  CAS  PubMed  Google Scholar 

  • Nakai A, Morimoto RI (1993) Characterization of a novel chicken heat shock transcription factor, HSF3 suggests a new regulatory factor. Mol Cell Biol 13: 1983-1997

    CAS  PubMed  Google Scholar 

  • Nakai A, Tanabe M, Kawazoe Y, Inazawa J, Morimoto RI, Nagata K (1997) HSF4, a new member of the human heat shock factor family which lacks properties of a transcriptional activator. Mol Cell Biol 17: 469-481

    CAS  PubMed  Google Scholar 

  • Nollen EA, Morimoto RI (2002) Chaperoning signaling pathways: Molecular chaperones as stresssensing ‘heat shock’ proteins. J Cell Sci 115: 2809-2816

    CAS  PubMed  Google Scholar 

  • Ohashi K, Burkart V, Flohe S, Kolb H (2000) Cutting edge: Heat shock protein 60 is a putative endogenous ligand of the Toll-like receptor-4 complex. J Immunol 164: 558-561

    CAS  PubMed  Google Scholar 

  • Osterloh A, Meier-Stiegen F, Veit A, Fleischer B, von Bonin A, Breloer M (2004) Lipopolysaccharide-free heat shock protein 60 activates T cells. J of Biol Chem 279: 47906-47911

    Article  CAS  Google Scholar 

  • Panjwani NN, Popova L, Srivastava PK (2002) Heat shock proteins gp96 and hsp70 activate the release of nitric oxide by APCs. J Immunol 168: 2997-3003

    CAS  PubMed  Google Scholar 

  • Pittet JF, Lee H, Morabito D, Howard MB, Welch WJ, Mackersie RC (2002) Serum levels of Hsp 72 measured early after trauma correlate with survival. J Trauma 52: 611-617 (see discussion p. 617)

    Article  PubMed  Google Scholar 

  • Pockley AG, De Faire U, Kiessling R, Lemne C, Thulin T, Frostegard J (2002) Circulating heat shock protein and heat shock protein antibody levels in established hypertension. J Hypertens 20: 1815-1820

    Article  CAS  PubMed  Google Scholar 

  • Pockley AG, Georgiades A, Thulin T, de Faire U, Frostegard J (2003) Serum heat shock protein 70 levels predict the development of atherosclerosis in subjects with established hypertension. Hypertension 42: 235-238

    Article  CAS  PubMed  Google Scholar 

  • Pockley AG, Shepherd J, Corton JM (1998) Detection of heat shock protein 70 (Hsp70) and antiHsp70 antibodies in the serum of normal individuals. Immunol Invest 27: 367-377

    Article  CAS  PubMed  Google Scholar 

  • Price BD, Calderwood SK (1991) Calcium is essential for multistep activation of the heat shock factor in permeabilized cells. Mol Cell Biol 11: 3365-3368

    CAS  PubMed  Google Scholar 

  • Rabindran SK, Gioorgi G, Clos J, Wu C (1991) Molecular cloning and expression of a human heat shock factor, HSF1. Proc Natl Acad Sci (USA) 88: 6906-6910

    Article  CAS  Google Scholar 

  • Rabindran SK, Haroun RI, Clos J, Wisniewski J, Wu C (1993) Regulation of heat shock factor trimer formation: Role of a conserved leucine zipper. Science 259: 230-234

    Article  CAS  PubMed  Google Scholar 

  • Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ, Geuze HJ (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183: 1161-1172

    Article  CAS  PubMed  Google Scholar 

  • Reed RC, Nicchitta CV (2000) Chaperone-mediated cross-priming: A hitchhiker’s guide to vesicle transport (review). Int J Mol Med 6: 259-264

    CAS  PubMed  Google Scholar 

  • Rock FL, Hardiman G, Timans JC, Kastelein RA, Bazan JF (1998) A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci USA 95: 588-593

    Article  CAS  PubMed  Google Scholar 

  • Sarge KD, Murphy SP, Morimoto RI (1993) Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol Cell Biol 13: 1392-1407

    CAS  PubMed  Google Scholar 

  • Schneider EM, Niess AM, Lorenz I, Northoff H, Fehrenbach E (2002) Inducible hsp70 expression analysis after heat and physical exercise: Transcriptional, protein expression, and subcellular localization. Ann NY Acad Sci 973: 8-12

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Rock KL (2002) Cell death releases endogenous adjuvants that selectively enhance immune surveillance of particulate antigens. Eur J Immunol 32: 155-162

    Article  CAS  PubMed  Google Scholar 

  • Soncin F, Zhang X, Chu B, Wang X, Asea A, Ann Stevenson M, Sacks DB, Calderwood SK (2003) Transcriptional activity and DNA binding of heat shock factor-1 involve phosphorylation on threonine 142 by CK2. Biochem Biophys Res Commun 303: 700-706

    Article  CAS  PubMed  Google Scholar 

  • Sondermann H, Becker T, Mayhew M, Wieland F, Hartl FU (2000) Characterization of a receptor for heat shock protein 70 on macrophages and monocytes. Biol Chem 381: 1165-1174

    Article  CAS  PubMed  Google Scholar 

  • Srivastava P (2002) Interaction of heat shock proteins with peptides and antigen presenting cells: Chaperoning of the innate and adaptive immune responses. Annu Rev Immunol 20: 395-425

    Article  CAS  PubMed  Google Scholar 

  • Srivastava PK (2000) Heat shock protein-based novel immunotherapies. Drug News Perspect 13: 517-522

    Article  CAS  PubMed  Google Scholar 

  • Srivastava PK (2003) Hypothesis: Controlled necrosis as a tool for immunotherapy of human cancer. Canc Immun 3: 4

    Google Scholar 

  • Srivastava PK (2005) Immunotherapy for human cancer using heat shock protein-Peptide complexes. Curr Oncol Rep 7: 104-108

    Article  CAS  PubMed  Google Scholar 

  • Srivastava PK, Amato RJ (2001) Heat shock proteins: the ‘Swiss Army Knife’ vaccines against cancers and infectious agents. Vaccine 19: 2590-2597

    Article  CAS  PubMed  Google Scholar 

  • Srivastava PK, Udono H, Blachere NE, Li Z (1994) Heat shock proteins transfer peptides during antigen processing and CTL priming. Immunogenet 39: 93-98

    Article  CAS  Google Scholar 

  • Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21: 335-376

    Article  CAS  PubMed  Google Scholar 

  • Tang D, Xie Y, Zhao M, Stevenson MA, Calderwood SK (2001) Repression of the HSP70B promoter by NFIL6, Ku70, and MAPK involves three complementary mechanisms. Biochem Biophys Res Commun 280: 280-285

    Article  CAS  PubMed  Google Scholar 

  • Terry DF, McCormick M, Andersen S, Pennington J, Schoenhofen E, Palaima E, Bausero M, Ogawa K, Perls T, Asea A (2004) Cardiovascular disease delay in centenarian offspring: Role of heat shock proteins. Ann NY Acad Sci 1019: 502-505

    Article  CAS  PubMed  Google Scholar 

  • Vabulas RM, Ahmad-Nejad P, da Costa C, Miethke T, Kirschning CJ, Hacker H, Wagner H (2001) Endocytosed HSP60s use Toll-like receptor 2 (TLR2) and TLR4 to activate the Toll/interleukin1 receptor signaling pathway in innate immune cells. J Biol Chem 276: 31332-31339

    Article  CAS  PubMed  Google Scholar 

  • Vabulas RM, Ahmad-Nejad P, Ghose S, Kirschning CJ, Issels RD, Wagner H (2002a) HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J Biol Chem 277: 15107-15112

    Article  CAS  Google Scholar 

  • Vabulas RM, Braedel S, Hilf N, Singh-Jasuja H, Herter S, Ahmad-Nejad P, Kirschning CJ, Da Costa C, Rammensee HG, Wagner H, Schild H (2002b) The endoplasmic reticulum-resident heat shock protein Gp96 activates dendritic cells via the Toll-like receptor 2/4 pathway. J Biol Chem 277: 20847-20853

    Article  CAS  Google Scholar 

  • Wang Y, Whittall T, McGowan E, Younson J, Kelly C, Bergmeier LA, Singh M, Lehner T (2005) Identification of stimulating and inhibitory epitopes within the heat shock protein 70 molecule that modulate cytokine production and maturation of dendritic cells. J Immunol 174: 3306-3316

    CAS  PubMed  Google Scholar 

  • Westwood T, Wu C (1993) Activation of Drosophila heat shock factor: Conformational changes associated with monomer-to-trimer transition. Mol Cell Biol 13: 3481-3486

    CAS  PubMed  Google Scholar 

  • Wright BH, Corton JM, El-Nahas AM, Wood RF Pockley AG (2000) Elevated levels of circulating heat shock protein 70 (Hsp70) in peripheral and renal vascular disease. Heart Vessels 15: 18-22

    Article  CAS  PubMed  Google Scholar 

  • Wu C (1995) Heat shock transcription factors: structure and regulation. Ann Rev Cell Dev Biol 11: 441-469

    Article  CAS  Google Scholar 

  • Xie Y, Chen C, Stevenson MA, Auron PE, Calderwood SK (2002) Heat shock factor 1 represses transcription of the IL-1b gene through physical interaction with nuclear factor of interleukin 6. J Biol Chem. 277: 11802-11810

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Zhong R, Chen C, Calderwood SK (2003) Heat Shock factor 1 contains two functional domains that mediate transcriptional repression of the c-fos and c-fms genes. J Biol Chem 278: 4687-4698

    Article  CAS  PubMed  Google Scholar 

  • Zanin-Zhorov A, Nussbaum G, Franitza S, Cohen IR, Lider O (2003) T cells respond to heat shock protein 60 via TLR2: Activation of adhesion and inhibition of chemokine receptors. Faseb J 17: 1567-1569

    CAS  PubMed  Google Scholar 

  • Zhang G, Ghosh S (2001) Toll-like receptor-mediated NF-kB activation: A phylogenetically conserved paradigm in innate immunity. J Clin. Invest 107: 13-19

    Article  CAS  PubMed  Google Scholar 

  • Zitvogel L, Fernandez N, Lozier A, Wolfers J, Regnault A, Raposo G, Amigorena S (1999) Dendritic cells or their exosomes are effective biotherapies of cancer. Eur J Cancer 35 Suppl 3, S36-38

    Article  Google Scholar 

  • Zitvogel L, Regnault A, Lozier A, Wolfers J, Flament C, Tenza D, Ricciardi-Castagnoli P, Raposo G, Amigorena S (1998) Eradication of established murine tumors using a novel cell-free vaccine: Dendritic cell-derived exosomes. Nat Med 4: 594-600

    Article  CAS  PubMed  Google Scholar 

  • Zou J, Guo Y, Guettouche T, Smith DF, Voellmy R (1998) Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94: 471-480

    Article  CAS  PubMed  Google Scholar 

  • Zuo J, Rungger D, Voellmy R (1995) Activation of the DNA-binding form of human heat shock factor 1 may involve the transition from an intramolecular to an intermolecular triple-stranded coiled-coil structure. Mol Cell Biol 15: 4319-4330

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Asea, A. (2008). Heat Shock Proteins and Toll-Like Receptors. In: Bauer, S., Hartmann, G. (eds) Toll-Like Receptors (TLRs) and Innate Immunity. Handbook of Experimental Pharmacology, vol 183. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72167-3_6

Download citation

Publish with us

Policies and ethics