Skip to main content
Log in

Resveratrol Protects SAMP8 Brain Under Metabolic Stress: Focus on Mitochondrial Function and Wnt Pathway

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Metabolic stress induced by high-fat (HF) diet leads to cognitive dysfunction and aging, but the physiological mechanisms are not fully understood. Senescence-accelerated prone mouse (SAMP8) models were conducted under metabolic stress conditions by feeding HF for 15 weeks, and the preventive effect of resveratrol was studied. This dietary strategy demonstrates cognitive impairment in SAMP8-HF and significant preventive effect by resveratrol-treated animals. Hippocampal changes in the proteins involved in mitochondrial dynamics optic atrophy-1 protein (OPA1) and mitofusin 2 (MFN2) comprised a differential feature found in SAMP8-HF that was prevented by resveratrol. Electronic microscopy showed a larger mitochondria in SAMP8-HF + resveratrol (SAMP8-HF + RV) than in SAMP8-HF, indicating increases in fusion processes in resveratrol-treated mice. According to the mitochondrial morphology, significant increases in the I-NDUFB8, II-SDNB, III-UQCRC2, and V-ATPase complexes, in addition to that of voltage-dependent anion channel 1 (VDAC1)/porin, were found in resveratrol-treated animals with regard to SAMP8-HF, reaching control-animal levels. Moreover, tumor necrosis factor alpha (TNF-α) and interleukin (IL-6) were increased after HF, and resveratrol prevents its increase. Moreover, we found that the HF diet affected the Wnt pathway, as demonstrated by β-catenin inactivation and modification in the expression of several components of this pathway. Resveratrol induced strong activation of β-catenin. The metabolic stress rendered in the cognitive and cellular pathways altered in SAMP8 focus on different targets in order to act on preventing cognitive impairment in neurodegeneration, and resveratrol can offer therapeutic possibilities for preventive strategies in aging or neurodegenerative conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Nilsson LG (2003) Memory function in normal aging. Acta Neurol Scand 107(Suppl 179):7–13

    Article  Google Scholar 

  2. Niccoli T, Partridge L (2012) Ageing as a risk factor for disease. Curr Biol 1122(17):R741–R752

    Article  Google Scholar 

  3. Cunnane S, Nugent S, Roy M, Courchesne-Loyer A, Croteau E, Tremblay S, Castellano A, Pifferi F et al (2011) Brain fuel metabolism, aging, and Alzheimer’s disease. Nutrition 27:3–20

    Article  CAS  PubMed  Google Scholar 

  4. Hoyer S (1993) Brain oxidative energy and related metabolism, neuronal stress, and Alzheimer’s disease: a speculative synthesis. J Geriatr Psychiatry Neurol 6(1):3–13

    Article  CAS  PubMed  Google Scholar 

  5. Hoyer S (1996) Oxidative metabolism deficiencies in brains of patients with Alzheimer’s disease. Acta Neurol Scand Suppl 165:18–24

    Article  CAS  PubMed  Google Scholar 

  6. Bobba A, Amadoro G, Valenti D, Corsetti V, Lassandro R, Atlante A (2013) Mitochondrial respiratory chain Complexes I and IV are impaired by β-amyloid via direct interaction and through complex I-dependent ROS production, respectively. Mitochondrion 13(4):298–311

    Article  CAS  PubMed  Google Scholar 

  7. Münch G, Schinzel R, Loske C, Wong A, Durany N, Li JJ, Vlassara H, Smith MA et al (1998) Alzheimer’s disease-synergistic effects of glucose deficit, oxidative stress and advanced glycation endproducts. J Neural Transm 105(4–5):439–461

    Article  PubMed  Google Scholar 

  8. Segobin S, La Joie R, Ritz L, Beaunieux H, Desgranges B, Chételat G, Pitel AL, Eustache F (2015) FDG-PET contributions to the pathophysiology of memory impairment. Neuropsychol Rev 25(3):326–355

    Article  PubMed  Google Scholar 

  9. Rapoport SI, Hatanpää K, Brady DR, Chandrasekaran K (1996) Brain energy metabolism, cognitive function and down-regulated oxidative phosphorylation in Alzheimer Disease. Neurodegeneration 5(4):473–476

    Article  CAS  PubMed  Google Scholar 

  10. Kwon B, Gamache T, Lee HK, Querfurth HW (2015) Synergistic effects of β-amyloid and ceramide-induced insulin resistance on mitochondrial metabolism in neuronal cells. Biochim Biophys Acta 1852(9):1810–1823

    Article  CAS  PubMed  Google Scholar 

  11. Petrov D, Pedrós I, Artiach G, Sureda FX, Barroso E, Pallàs M, Casadesús G, Beas-Zarate C et al (2015) High-fat diet-induced deregulation of hippocampal insulin signaling and mitochondrial homeostasis deficiencies contribute to Alzheimer disease pathology in rodents. Biochim Biophys Acta 1852(9):1687–1699

    Article  CAS  PubMed  Google Scholar 

  12. Reddy PH, Beal FM (2008) Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer’s disease. Trends Mol Med 14:45–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pulliam DA, Deepa SS, Liu Y, Hill S, Lin AL, Bhattacharya A, Shi Y, Sloane L et al (2014) Complex IV-deficient Surf1 (−/−) mice initiate mitochondrial stress responses. Biochem J 462(2):359–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Coskun PE, Beal MF, Wallace DC (2004) Alzheimer’s brains harbor somatic mtDNA control-region mutations that suppress mitochondrial transcription and replication. Proc Natl Acad Sci U S A 101(29):10726–10731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lin MT, Simon DK, Ahn CH, Kim LM, Beal MF (2002) High aggregate burden of somatic mtDNA point mutations in aging and Alzheimer’s disease brain. Hum Mol Genet 11(2):133–145

    Article  CAS  PubMed  Google Scholar 

  16. Onyango IG, Lu J, Rodova M, Lezi E, Crafter AB, Swerdlow RH (2010) Regulation of neuron mitochondrial biogenesis and relevance to brain health. Biochim Biophys Acta 1802:228–234

    Article  CAS  PubMed  Google Scholar 

  17. Wang X, Su B, Siedlak SL, Moreira PI, Fujioka H, Wang Y, Casadesus G, Zhu X (2008) Amyloid-beta overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proc Natl Acad Sci U S A 105:19318–19323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang X, Su B, Lee HG, Li X, Perry G, Smith MA, Zhu X (2009) Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. J Neurosci 29(28):9090–9103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang X, Wang W, Li L, Perry G, Lee HG, Zhu X (2014) Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim Biophys Acta 1842(8):1240–1247

    Article  CAS  PubMed  Google Scholar 

  20. Westermann B (2012) Bioenergetic role of mitochondrial fusion and fission. Biochim Biophys Acta 1817(10):1833–1838

    Article  CAS  PubMed  Google Scholar 

  21. Bereiter-Hahn J (2014) Mitochondrial dynamics in aging and disease. Prog Mol Biol Transl Sci 127:93–131

    Article  CAS  PubMed  Google Scholar 

  22. Hall AR, Burke N, Dongworth RK, Hausenloy DJ (2014) Mitochondrial fusion and fission proteins: novel therapeutic targets for combating cardiovascular disease. Br J Pharmacol 171(8):1890–1906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rao TP, Kühl M (2010) An updated overview on Wnt signaling pathways a prelude for more. Circ Res 106:1798–1806

    Article  CAS  PubMed  Google Scholar 

  24. Christodoulides C, Scarda A, Granzotto M, Milan G, Dalla-Nora E, Keogh J, De Pergola G, Stirling H et al (2006) Wnt 10B mutations in human obesity. Diabetologia 49:678–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, Sainz J, Helgason A, Stefansson H et al (2006) Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 38(3):320–323

    Article  CAS  PubMed  Google Scholar 

  26. Kanazawa A, Tsukada S, Sekine A, Tsunoda T, Takahashi A, Kashiwagi A, Tanaka Y, Babazono T et al (2004) Association of the gene encoding wingless-type mammary tumor virus integration-site family member 5B (WNT5B) with type 2 diabetes. Am J Hum Genet 75:832–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Oliva CA, Vargas JY, Inestrosa NC (2013) Wnts in adult brain: from synaptic plasticity to cognitive deficiencies. Front Cell Neurosci 3(7):224

    Google Scholar 

  28. Inestrosa NC, Montecinos-Oliva C, Fuenzalida M (2012) Wnt signaling: role in Alzheimer disease and schizophrenia. J Neuroimmune Pharmaco 7:788–807

    Article  Google Scholar 

  29. Toledo EM, Inestrosa NC (2010) Activation of Wnt signaling by lithium and rosiglitazone reduced spatial memory impairment and neurodegeneration in brains of an APPswe/PSEN1DeltaE9 mouse model of Alzheimer’s disease. Mol Psychiatry 15(272–285):228

    Article  Google Scholar 

  30. Pallàs M, Porquet D, Vicente A, Sanfeliu C (2013) Resveratrol: new avenues for a natural compound in neuroprotection. Curr Pharm Des 19(38):6726–6731

    Article  PubMed  Google Scholar 

  31. Vingtdeux V, Dreses-Werringloer U, Zhao H, Davies P, Marambaud P (2008) Therapeutic potential of resveratrol in Alzheimer’s disease. BMC Neurosci 9(Suppl 2):S6

    Article  PubMed  PubMed Central  Google Scholar 

  32. Porquet D, Casadesús G, Bayod S, Vicente A, Canudas AM, Vilaplana J, Pelegrí C, Sanfeliu C et al (2013) Dietary resveratrol prevents Alzheimer’s markers and increases life span in SAMP8. Age 35(5):1851–1865

    Article  CAS  PubMed  Google Scholar 

  33. Porquet D, Griñán-Ferré C, Ferrer I, Camins A, Sanfeliu C, Del Valle J, Pallàs M (2014) Neuroprotective role of trans-resveratrol in a murine model of familial Alzheimer’s disease. J Alzheimers Dis 42(4):1209–1220

    CAS  PubMed  Google Scholar 

  34. Mehla J, Chauhan BC, Chauhan NB (2014) Experimental induction of type 2 diabetes in aging-accelerated mice triggered Alzheimer-like pathology and memory deficits. J Alzheimers Dis 39(1):145–162

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ohta H, Nishikawa H, Hirai K, Kato K, Miyamoto M (1996) Relationship of impaired brain glucose metabolism to learning deficit in the senescence-accelerated mouse. Neurosci Lett 217(1):37–40

    Article  CAS  PubMed  Google Scholar 

  36. Morley JE, Farr SA, Kumar VB, Armbrecht HJ (2012) The SAMP8 mouse: a model to develop therapeutic interventions for Alzheimer’s disease. Curr Pharm 18(8):1123–1130

    Article  CAS  Google Scholar 

  37. Pallas M, Camins A, Smith MA, Perry G, Lee HG, Casadesus G (2008) From aging to Alzheimer’s disease: unveiling “the switch” with the senescence-accelerated mouse model (SAMP8). J Alzheimers Dis 15(4):615–624

    Article  CAS  PubMed  Google Scholar 

  38. Ayala JE, Samuel VT, Morton GJ, Obici S, Croniger CM, Shulman GI, Wasserman DH, McGuinness OP (2010) NIH Mouse Metabolic Phenotyping Center Consortium. Standard operating procedures for describing and performing metabolic tests of glucose homeostasis in mice. Dis Model Mech 3(9–10):525–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats. Behavioral data. Behav Brain Res 31:47–59

    Article  CAS  PubMed  Google Scholar 

  40. Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1(2):848–858

    Article  PubMed  PubMed Central  Google Scholar 

  41. Pellow S, Chopin P, File SE, Briley M (1985) Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14:149–167

    Article  CAS  PubMed  Google Scholar 

  42. Hall CS (1934) Emotional behavior in the rat. I. Defecation and urination as measures of individual differences in emotionality. J Comp Psychol 8(3):385–403

    Article  Google Scholar 

  43. Crawley JN (2004) Designing mouse behavioral tasks relevant to autistic-like behaviors. Mental Retardation and Developmental Disabilities. Res Rev 10(4):248–258

    Google Scholar 

  44. Mayeda ER, Whitmer RA, Yaffe K (2015) Diabetes and cognition. Clin Geriatr Med 31(1):101–115

    Article  PubMed  Google Scholar 

  45. Verdile G, Keane KN, Cruzat VF, Medic S, Sabale M, Rowles J, Wijesekara N, Martins RN et al (2015) Inflammation and oxidative stress: the molecular connectivity between insulin resistance, obesity, and alzheimer’s disease. Mediators Inflamm. doi:10.1155/2015/105828

    PubMed  PubMed Central  Google Scholar 

  46. Baur JA, Ungvari Z, Minor RK, Le Couteur DG, de Cabo R (2012) Are sirtuins viable targets for improving health span and lifespan? Nat Rev Drug Discov 11(6):443–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Minor RK, Baur JA, Gomes AP, Ward TM, Csiszar A, Mercken EM, Abdelmohsen K, Shin YK et al (2011) SRT1720 improves survival and healthspan of obese mice. Sci Rep 1:70

    Article  PubMed  PubMed Central  Google Scholar 

  48. Julien C, Tremblay C, Phivilay A, Berthiaume L, Emond V, Julien P, Calon F (2010) High-fat diet aggravates amyloid-beta and tau pathologies in the 3xTg-AD mouse model. Neurobiol Aging 31:1516–1531

    Article  CAS  PubMed  Google Scholar 

  49. Currais A, Prior M, Lo D, Jolivalt C, Schubert D, Maher P (2012) Diabetes exacerbates amyloid and neurovascular pathology in aging-accelerated mice. Aging Cell 11(6):1017–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. López-Ramos JC, Jurado-Parras MT, Sanfeliu C, Acuña-Castroviejo D, Delgado-García JM (2012) Learning capabilities and CA1-prefrontal synaptic plasticity in a mice model of accelerated senescence. Neurobiol Aging 33(3):627.e13–627.e26

    Article  Google Scholar 

  51. Zhang L, Trushin S, Christensen TA, Bachmeier BV, Gateno B, Schroeder A, Yao J, Itoh K et al (2016) Altered brain energetics induces mitochondrial fission arrest in Alzheimer’s disease. Sci Rep 5(6):18725

    Article  Google Scholar 

  52. Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J et al (2006) Elliott, Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 127:1109–1122

    Article  CAS  PubMed  Google Scholar 

  53. Price NL, Gomes AP, Ling AJ, Duarte FV, Martin-Montalvo A, North BJ, Agarwal B, Ye L et al (2012) SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab 15(5):675–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Menzies KJ, Singh K, Saleem A, Hood DA (2013) Sirtuin 1-mediated effects of exercise and resveratrol on mitochondrial biogenesis. J Biol Chem 288(10):6968–6979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Almeida M, Han L, Ambrogini E, Weinstein RS, Manolagas SC (2011) Glucocorticoids and tumor necrosis factor (TNF) α increase oxidative stress and suppress WNT signaling in osteoblasts. J Biol Chem 286(52):44326–44335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hiyama A, Yokoyama K, Nukaga T, Sakai D, Mochida J (2013) A complex interaction between Wnt signaling and TNF-α in nucleus pulposus cells. Arthritis Res Ther 15(6):R189. doi:10.1186/ar4379

    Article  PubMed  PubMed Central  Google Scholar 

  57. Stock M, Böhm C, Scholtysek C, Englbrecht M, Fürnrohr BG, Klinger P, Gelse K, Gayetskyy S et al (2013) Wnt inhibitory factor 1 deficiency uncouples cartilage and bone destruction in tumor necrosis factor α-mediated experimental arthritis. Arthritis Rheum 65(9):2310–2322. doi:10.1002/art.38054

    Article  CAS  PubMed  Google Scholar 

  58. Arrázola MS, Silva-Álvarez C, Inestrosa NC (2015) How the Wnt signaling pathway protects from neurodegeneration: the mitochondrial scenario. Front Cell Neurosci 9:166

    Article  PubMed  PubMed Central  Google Scholar 

  59. Clevers H, Nusse R (2012) Wnt/β-catenin signaling and disease. Cell 149(6):1192–1205

    Article  CAS  PubMed  Google Scholar 

  60. Bayod S, Felice P, Andrés P, Rosa P, Camins A, Pallàs M, Canudas AM (2015) Downregulation of canonical Wnt signaling in hippocampus of SAMP8 mice. Neurobiol Aging 36(2):720–729

    Article  CAS  PubMed  Google Scholar 

  61. Carter LG, D’Orazio JA, Pearson KJ (2014) Resveratrol and cancer: focus on in vivo evidence. Endocr Relat Cancer 21:R209–R225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hope C, Kestutis P, Marina P (2008) Low concentrations of resveratrol inhibit Wnt signal throughput in colon-derived cells: Implications for colon cancer prevention. Mol Nutr Food Res 52(Suppl 1):S52–S61. doi:10.1002/mnfr.200700448

    PubMed  PubMed Central  Google Scholar 

  63. Takahashi-Yanaga F, Kahn M (2010) Targeting Wnt signaling: can we safely eradicate cancer stem cells? Clin Cancer Res 16:3153

    Article  CAS  PubMed  Google Scholar 

  64. Zhang P, Li H, Yang B (2014) Biological significance and therapeutic implication of resveratrol-inhibited Wnt, Notch and STAT3 signaling in cervical cancer cells. Genes Cancer 5(5–6):154–164

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Mo S, Cui Z (2012) Regulation of canonical Wnt signaling during development and diseases. Embryogenesis. Dr. Ken-Ichi Sato (Ed.), ISBN: 978-953-51-0466-7, InTech

  66. Armbrecht HJ, Siddiqui AM, Green M, Farr SA, Kumar VB, Banks WA, Patrick P, Shah GN et al (2015) Antisense against Amyloid-β protein precursor reverses memory deficits and alters gene expression in neurotropic and insulin-signaling pathways in SAMP8 mice. J Alzheimers Dis 46(2):535–548

    Article  CAS  PubMed  Google Scholar 

  67. Griñan-Ferre C, Pérez-Cáceres D, Gutiérrez-Zetina SM, Camins A, Palomera-Avalos V, Ortuño-Sahagún D, Rodrigo MT, Pallás M (2015) Environmental enrichment improves behavior, cognition, and brain functional markers in young senescence-accelerated prone mice (SAMP8). Mol Neurobiol. doi:10.1007/s12035-015-9210-6

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Maggie Brunner, M.A., for revising the language and style of the manuscript. This study was supported by grant SAF-2012-39852 from the Ministerio de Educación y Ciencia and FEDER founds. P-A V, CG-F, AC, and MP are affiliated with 2014SGR 525 and CIBERNED.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pallàs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palomera-Avalos, V., Griñán-Ferré, C., Puigoriol-Ilamola, D. et al. Resveratrol Protects SAMP8 Brain Under Metabolic Stress: Focus on Mitochondrial Function and Wnt Pathway. Mol Neurobiol 54, 1661–1676 (2017). https://doi.org/10.1007/s12035-016-9770-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9770-0

Keywords

Navigation