Skip to main content

Advertisement

Log in

Deletion of Nuclear Localizing Signal Attenuates Proinflammatory Activity of Prothymosin-Alpha and Enhances Its Neuroprotective Effect on Transient Ischemic Stroke

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Post-ischemic inflammation plays an important role in the progression of ischemia/reperfusion injuries. Prothymosin-α (ProT) can protect cells from necrotic death following ischemia; however, its immunostimulatory actions may counteract the neuroprotective effect. We proposed that ProTΔNLS, synthesized by deleting its nuclear localizing signal (NLS) at the C-terminal of ProT, can attenuate the immunostimulatory activity and has more salient neuroprotective effect. In this study, we examined the therapeutic effects of ProT and ProTΔNLS in a transient middle cerebral artery occlusion (tMCAO) model of rats. Rats that had sustained 90 min of tMCAO were treated with GST-vehicle, ProT, or ProTΔNLS. Therapeutic outcomes were evaluated by infarction volume assay and behavioral assessment. Changes to inflammatory mediators, including tumor necrosis factor α (TNF-α), interleukin-10 (IL-10), and myeloperoxidase (MPO) were evaluated by enzyme-linked immunosorbent assay. Activated matrix metalloproteinases 2 (MMP-2) and 9 (MMP-9) levels were evaluated by gelatin zymography. Microglial activation was identified by double-immunostaining for Iba-1 and CD68. Our results showed that while both ProT and ProTΔNLS reduce infarction volume and improve functional outcome, ProTΔNLS provides the best therapeutic outcome. ProT increases TNF-α but decreases IL-10 secretion after ischemic injury, reflecting its pro-inflammatory activity. ProTΔNLS suppresses expression of TNF-α, MPO, and activity of MMPs in ischemic brain tissue. It also suppresses activation of microglia in penumbral cortex. These data demonstrate the immunesuppressive activities of ProTΔNLS. In conclusion, ProT has pro-inflammatory effect that may counteract its neuroprotective effect. Deletion of NLS from ProT may attenuate post-ischemic inflammation and enhance the neuroprotective effects of ProT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lo EH, Dalkara T, Moskowitz MA (2003) Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci 4(5):399–415

    Article  CAS  PubMed  Google Scholar 

  2. Deb P, Sharma S, Hassan KM (2010) Pathophysiologic mechanisms of acute ischemic stroke: an overview with emphasis on therapeutic significance beyond thrombolysis. Pathophysiology 17(3):197–218

    Article  CAS  PubMed  Google Scholar 

  3. Wang Q, Tang XN, Yenari MA (2007) The inflammatory response in stroke. J Neuroimmunol 184(1–2):53–68

    Article  CAS  PubMed  Google Scholar 

  4. Amantea D, Nappi G, Bernardi G, Bagetta G, Corasaniti MT (2009) Post-ischemic brain damage: pathophysiology and role of inflammatory mediators. FEBS J 276(1):13–26

    Article  CAS  PubMed  Google Scholar 

  5. Jin R, Yang G, Li G (2010) Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukocyte Biology 87(5):779–789

    Article  CAS  Google Scholar 

  6. Sughrue ME, Mehra A, Connolly ES Jr, D’Ambrosio AL (2004) Anti-adhesion molecule strategies as potential neuroprotective agents in cerebral ischemia: a critical review of the literature. Inflamm Res 53(10):497–508

    Article  CAS  PubMed  Google Scholar 

  7. Stamatovic SM, Shakui P, Keep RF, Moore BB, Kunkel SL, Van Rooijen N, Andjelkovic AV (2005) Monocyte chemoattractant protein-1 regulation of blood–brain barrier permeability. J Cereb Blood Flow Metab 25(5):593–606

    Article  CAS  PubMed  Google Scholar 

  8. Allan SM, Rothwell NJ (2001) Cytokines and acute neurodegeneration. Nat Rev Neurosci 2(10):734–744

    Article  CAS  PubMed  Google Scholar 

  9. Murakami Y, Saito K, Hara A, Zhu Y, Sudo K, Niwa M, Fujii H, Wada H et al (2005) Increases in tumor necrosis factor-alpha following transient global cerebral ischemia do not contribute to neuron death in mouse hippocampus. J Neurochem 93(6):1616–1622

    Article  CAS  PubMed  Google Scholar 

  10. Offner H, Subramanian S, Parker SM, Afentoulis ME, Vandenbark AA, Hurn PD (2006) Experimental stroke induces massive, rapid activation of the peripheral immune system. J Cereb Blood Flow Metab 26(5):654–665

    Article  CAS  PubMed  Google Scholar 

  11. Strle K, Zhou JH, Shen WH, Broussard SR, Johnson RW, Freund GG, Dantzer R, Kelley KW (2001) Interleukin-10 in the brain. Crit Rev Immunol 21(5):427–449

    Article  CAS  PubMed  Google Scholar 

  12. Kurzepa J, Kurzepa J, Golab P, Czerska S, Bielewicz J (2014) The significance of matrix metalloproteinase (MMP)-2 and MMP-9 in the ischemic stroke. Int J Neurosci 124(10):707–716

    Article  CAS  PubMed  Google Scholar 

  13. Park KP, Rosell A, Foerch C, Xing C, Kim WJ, Lee S, Opdenakker G, Furie KL et al (2009) Plasma and brain matrix metalloproteinase-9 after acute focal cerebral ischemia in rats. Stroke 40(8):2836–2842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Clark AW, Krekoski CA, Bou SS, Chapman KR, Edwards DR (1997) Increased gelatinase A (MMP-2) and gelatinase B (MMP-9) activities in human brain after focal ischemia. Neurosci Lett 238(1–2):53–56

    Article  CAS  PubMed  Google Scholar 

  15. Haritos AA, Goodall GJ, Horecker BL (1984) Prothymosin alpha: isolation and properties of the major immunoreactive form of thymosin alpha 1 in rat thymus. Proc Natl Acad Sci U S A 81(4):1008–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Baxevanis CN, Reclos GJ, Panneerselvam C, Papamichail M (1988) Enhancement of human T lymphocyte functions by prothymosin alpha I Augmentation of mixed lymphocyte culture reactions and soluble protein-induced proliferative responses. Immunopharmacology 15(2):73–84

    Article  CAS  PubMed  Google Scholar 

  17. Baxevanis CN, Thanos D, Reclos GJ, Anastasopoulos E, Tsokos GC, Papamatheakis J, Papamichail M (1992) Prothymosin alpha enhances human and murine MHC class II surface antigen expression and messenger RNA accumulation. J Immunol 148(7):1979–1984

    CAS  PubMed  Google Scholar 

  18. Skopeliti M, Voutsas IF, Klimentzou P, Tsiatas ML, Beck A, Bamias A, Moraki M, Livaniou E et al (2006) The immunologically active site of prothymosin alpha is located at the carboxy-terminus of the polypeptide. Evaluation of its in vitro effects in cancer patients. Cancer Immunol Immunother 55(10):1247–1257

    Article  CAS  PubMed  Google Scholar 

  19. Mosoian A (2011) Intracellular and extracellular cytokine-like functions of prothymosin α: implications for the development of immunotherapies. Future Med Chem 3(9):1199–1208

    Article  CAS  PubMed  Google Scholar 

  20. Manrow RE, Sburlati AR, Hanover JA, Berger SL (1991) Nuclear targeting of prothymosin. J Biol Chem 266(6):3916–3924

    CAS  PubMed  Google Scholar 

  21. Skopeliti M, Iconomidou VA, Derhovanessian E, Pawelec G, Voelter W, Kalbacher H, Hamodrakas SJ, Tsitsilonis OE (2009) Prothymosin α immunoactive carboxyl-terminal peptide TKKQKTDEDD stimulates lymphocyte reactions, induces dendritic cell maturation and adopts a β-sheet conformation in a sequence-specific manner. Mol Immunol 46(5):784–792

    Article  CAS  PubMed  Google Scholar 

  22. Ueda H (2009) Prothymosin α and cell death mode switch, a novel target for the prevention of cerebral ischemia-induced damage. Pharmacology &Therapeutics 123(3):323–333

    Article  CAS  Google Scholar 

  23. Ueda H, Fujita R (2007) Prothymosin-α1 prevents necrosis and apoptosis following stroke. Cell Death Differ 14(10):1839–1842

    Article  PubMed  Google Scholar 

  24. Shiau AL, Chen SY, Chang MY, Su CH, Chung SY, Yo YT, Wang CR, Wu CL (2007) Prothymosin alpha lacking the nuclear localization signal as an effective gene therapeutic strategy in collagen-induced arthritis. J Immunol 178(7):4688–4694

    Article  CAS  PubMed  Google Scholar 

  25. Shiau AL, Lin PR, Chang MY, Wu CL (2001) Retrovirus-mediated transfer of prothymosin gene inhibits tumor growth and prolongs survival in murine bladder cancer. Gene Ther 8(21):1609–1617

    Article  CAS  PubMed  Google Scholar 

  26. Longa EZ, Weinstein PR, Carlson S, Cummings R (1989) Reversible middle cerebral artery occlusion without craniotomy in rats. Stroke 20:84–91

    Article  CAS  PubMed  Google Scholar 

  27. Wang LC, Huang CY, Wang HK, Wu MH, Tsai KJ (2012) Magnesium sulfate and nimesulide have synergistic effects on rescuing brain damage after transient focal ischemia. J Neurotrauma 29(7):1518–1529

    Article  PubMed  PubMed Central  Google Scholar 

  28. Swanson RA, Morton MT, Tsao-Wu G, Savalos RA, Davidson C, Sharp FR (1990) A semiautomated method for measuring brain infarct volume. J Cereb Blood Flow Metab 10(2):290–293

    Article  CAS  PubMed  Google Scholar 

  29. Clark WM, Rinker LG, Lessov NS, Hazel K, Hill JK, Stenzel-Poore M, Eckenstein F (2000) Lack of interleukin-6 expression is not protective against focal central nervous system ischemia. Stroke 31(7):1715–1720

    Article  CAS  PubMed  Google Scholar 

  30. Huang CY, Wang LC, Wang HK, Pan CH, Cheng YY, Shan YS, Chio CC, Tsai KJ (2015) Memantine alleviates brain injury and neurobehavioral deficits after experimental subarachnoid hemorrhage. Mol Neurobiol 51(3):1038–1053

    Article  CAS  PubMed  Google Scholar 

  31. Buttini M, Appel K, Sauter A, Gebicke-Haerter P-J, Boddeke HWGM (1996) Expression of tumor necrosis factor alpha after focal cerebral ischemia in the rat. Neuroscience 71(1):1–16

    Article  CAS  PubMed  Google Scholar 

  32. Patel AR, Ritzel R, McCullough LD, Liu F (2013) Microglia and ischemic stroke: a double-edged sword. Int J Physiol Pathophysiol Pharmacol 5(2):73–90

    PubMed  PubMed Central  Google Scholar 

  33. Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J (2009) Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 29(13):3974–3980

    Article  CAS  PubMed  Google Scholar 

  34. Wang YC, Lin S, Yang QW (2011) Toll-like receptors in cerebral ischemic inflammatory injury. J Neuroinflammation 8(134):554–561

    Google Scholar 

  35. Halder SK, Matsunaga H, Ishii KJ, Ueda H (2015) Prothymosin-alpha preconditioning activates TLR4-TRIF signaling to induce protection of ischemic retina. J Neurochem 2015 Sep 14. doi: 10.1111/jnc.13356.

  36. Hallenbeck JM (2002) The many faces of tumor necrosis factor in stroke. Nat Med 8(12):1363–1368

    Article  CAS  PubMed  Google Scholar 

  37. Haddad M, Rhinn H, Bloquel C, Coqueran B, Szabo C, Plotkine M, Scherman D, Margaill I (2006) Anti-inflammatory effects of PJ34, a poly(ADP-ribose) polymerase inhibitor, in transient focal cerebral ischemia in mice. Br J Pharmacol 149(1):23–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nawashiro H, Tasaki K, Ruetzler CA, Hallenbeck JM (1997) TNF-alpha pretreatment induces protective effects against focal cerebral ischemia in mice. J Cereb Blood Flow Metab 17(5):483–490

    Article  CAS  PubMed  Google Scholar 

  39. Grilli M, Barbieri I, Basudev H, Brusa R, Casati C, Lozza G, Ongini E (2000) Interleukin-10 modulates neuronal threshold of vulnerability to ischaemic damage. Eur J Neurosci 12(7):2265–2272

    Article  CAS  PubMed  Google Scholar 

  40. Ooboshi H, Ibayashi S, Shichita T, Kumai Y, Takada J, Ago T, Arakawa S, Sugimori H et al (2005) Postischemic gene transfer of interleukin-10 protects against both focal and global brain ischemia. Circulation 111(7):913–919

    Article  CAS  PubMed  Google Scholar 

  41. Wjhre T, Halvorsen B, Damås JK, Yndestad A, Brosstad F, Gullestad L, Kjekshus J, Frøland SS et al (2002) Inflammatory imbalance between IL-10 and TNF-α in unstable angina potential plaque stabilizing effects of IL-10. Eur J Clin Invest 32(11):803–810

    Article  Google Scholar 

  42. Silvestre JB, Mallat Z, Tamarat R, Duriez M, Tedgui A, Levy BI (2001) Regulation of matrix metalloproteinase activity in ischemic tissue by interleukin-10. Role in ischaemia-induced angiogenesis. Circ Res 89(3):259–264

    Article  CAS  PubMed  Google Scholar 

  43. Bethea JR, Nagashima H, Acosta MC, Briceno C, Gomez F, Marcillo AE, Loor K, Green J et al (1999) Systemically administered interleukin-10 reduces tumor necrosis factor-alpha production and significantly improves functional recovery following traumatic spinal cord injury in rats. J Neurotrauma 16(10):851–863

    Article  CAS  PubMed  Google Scholar 

  44. Issazaseh S, Lorentzen JC, Mustafa MI, HOjeberg B, Miissener A, Olsson T (1996) Cytokines in relapsing experimental autoimmune encephalomyelitis in DA rats: persistent mRNA expression of proinflammatory cytokines and absent expression of interleukin- 10 and transforming growth factor-β. J Neuroimmunol 69(1–2):103–115

    Article  Google Scholar 

  45. Londono D, Carvajal J, Strle K, Kim KS, Cadavid D (2011) IL-10 Prevents apoptosis of brain endothelium during bacteremia. J Immunol 186(12):7176–7186

    Article  CAS  PubMed  Google Scholar 

  46. Levy Y, Brouet JC (1994) Interleukin-10 prevents spontaneous death of germinal center B cells by induction of the BCL-2 protein. J Clin Invest 93(1):424–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Romanic AM, White RF, Arleth AJ, Ohlstein EH, Barone FC (1998) Matrix metalloproteinase expression increases after cerebral focal ischemia in rats: inhibition of matrix metalloproteinases-9 reduces infarct size. Stroke 29(5):1020–1030

    Article  CAS  PubMed  Google Scholar 

  48. Opdenakker G, Van den Steen PE, Van Damme J (2001) Gelatinase B: a tuner and amplifier of immune functions. Trends Immunol 22(10):571–579

    Article  CAS  PubMed  Google Scholar 

  49. Gottschall PE, Deb S (1996) Regulation of matrix metalloproteinase expressions in astrocytes, microglia and neurons. Neuroimmunomodulation 3(2–3):69–75

    Article  CAS  PubMed  Google Scholar 

  50. Rosenberg GA, Cunningham LA, Wallace J, Alexander S, Estrada EY, Grossetete M, Razhagi A, Miller K et al (2001) Immunohistochemistry of matrix metalloproteinases in reperfusion injury to rat brain: activation of MMP-9 linked to stromelysin-1 and microglia in cell cultures. Brain Res 893(1–2):104–112

    Article  CAS  PubMed  Google Scholar 

  51. Jiang X, Namura S, Nagata I (2001) Matrix metalloproteinase inhibitor KB-R7785 attenuates brain damage resulting from permanent focal cerebral ischemia in mice. Neurosci Lett 305(1):41–44

    Article  CAS  PubMed  Google Scholar 

  52. Gu Z, Cui J, Brown S, Fridman R, Mobashery S, Strongin AY, Lipton SA (2005) A highly specific inhibitor of matrix metalloproteinase-9 rescues laminin from proteolysis and neurons from apoptosis in transient focal cerebral ischemia. J Neurosci 25(27):6401–8

    Article  CAS  PubMed  Google Scholar 

  53. Denes A, Vidyasagar R, Feng J, Narvainen J, McColl BW, Kauppinen RA, Allan SM (2007) Proliferating resident microglia after focal cerebral ischaemia in mice. J Cereb Blood Flow Metab 27(12):1941–1953

    Article  CAS  PubMed  Google Scholar 

  54. Schilling M, Besselmann M, Leonhard C, Mueller M, Ringelstein EB, Kiefer R (2003) Microglial activation precedes and predominates over macrophage infiltration in transient focal cerebral ischemia: a study in green fluorescent protein transgenic bone marrow chimeric mice. Exp Neurol 183(1):25–33

    Article  PubMed  Google Scholar 

  55. Orr AG, Orr AL, Li XJ, Gross RE, Traynelis SF (2009) Adenosine A(2A) receptor mediates microglial process retraction. Nat Neurosci 12(7):872–878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fontainhas AM, Wang M, Liang KJ, Chen S, Mettu P, Damani M, Fariss RN, Li W et al (2011) Microglial morphology and dynamic behavior is regulated by ionotropic glutamatergic and GABAergic neurotransmission. PLoS One 6(1), e15973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mosher KI, Andres RH, Fukuhara T, Bieri G, Hasegawa-Moriyama M, He Y, Guzman R, Wyss-Coray T (2012) Neural progenitor cells regulate microglia functions and activity. Nat Neurosci 15(11):1485–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ito D, Tanaka K, Suzuki S, Dembo T, Fukuuchi Y (2001) Enhanced expression of Iba1, ionized calcium-binding adapter molecule 1, after transient focal cerebral ischemia in rat brain. Stroke 32(5):1208–1215

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Ministry of Science and Technology, Taiwan (NSC-102-2314-B-006-038, NSC-103-2314-B-006-053 and NSC-102-2320 -B-006-040-MY3), and the National Cheng Kung University Hospital, Taiwan (NCKUH-10203019 and NCKUH-10407013). The authors thank Ya-Chun Hsiao for the services on image acquisition and analysis from the FACS-like Tissue Cytometry in the Center of Clinical Medicine, National Cheng Kung University Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuen-Jer Tsai.

Ethics declarations

Conflict of Interest

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, LC., Wu, CL., Cheng, YY. et al. Deletion of Nuclear Localizing Signal Attenuates Proinflammatory Activity of Prothymosin-Alpha and Enhances Its Neuroprotective Effect on Transient Ischemic Stroke. Mol Neurobiol 54, 582–593 (2017). https://doi.org/10.1007/s12035-015-9671-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9671-7

Keywords

Navigation