Skip to main content
Log in

Corilagin Attenuates Radiation-Induced Brain Injury in Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Cranial irradiation-induced inflammation plays a critical role in the initiation and progression of radiation-induced brain injury (RIBI). Anti-inflammation treatment may provide therapeutic benefits. Corilagin (beta-1-O-galloyl-3, 6-(R)-hexahydroxydiphenoyl-D-glucose, C27H22O18) was a novel member of the tannin family with anti-inflammatory properties and is isolated from some medicinal plants, such as Phyllanthus amarus and Caesalpinia coriaria. In this study, the effect of Corilagin on RIBI was investigated and the underlying mechanisms were explored. Spatial learning and memory ability of mice were investigated by the Morris water maze test. Evans blue leakage and electron microscopy were used to assess the integrity of blood-brain barrier (BBB). The mRNA and protein expressions of inflammatory cytokines, TNF-α and IL-1β, were measured by using real-time PCR and Western blotting. The activation of microglial cells and expression of TNF-α were examined by immunofluorescence staining. Phosphorylated signal transducers and activators of transcription 3 (p-STAT3) and IκBα, and the translocation of p65 from cytoplasm to nucleus were detected by using Western blotting. Morris water maze test showed that Corilagin ameliorated the neurocognitive deficits in RIBI mice. Evans blue leakage and electron microscopy exhibited that Corilagin partially protected the BBB integrity from cranial irradiation-caused damage; immunofluorescence staining showed that Corilagin could inhibit microglial activation and TNF-α expression. Real-time PCR and Western blotting revealed that Corilagin downregulated the expression of TNF-α and IL-1β and inhibited the irradiation-induced activation of NF-κB pathways by upregulating p-STAT3 expression. In conclusion, Corilagin could attenuate RIBI through inhibiting microglial activation and the expressions of inflammatory cytokines. Corilagin might inhibit the activation of NF-κB pathway in a STAT3-associated manner, thereby downregulating the inflammatory cytokine expressions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Khuntia D, Brown P, Li J, Mehta MP (2006) Whole-brain radiotherapy in the management of brain metastasis. J ClinOncol 24(8):1295–1304

    Article  CAS  Google Scholar 

  2. Johannesen TB, Langmark F, Lote K (2003) Cause of death and long-term survival in patients with neuro-epithelial brain tumours: a population-based study. Eur J Cancer 39(16):2355–2363

    Article  CAS  PubMed  Google Scholar 

  3. Cole AM, Scherwath A, Ernst G, Lanfermann H, Bremer M, Steinmann D (2013) Self-reported cognitive outcomes in patients with brain metastases before and after radiation therapy. Int J Radiat Oncol Biol Phys 87(4):705–712

    Article  PubMed  Google Scholar 

  4. Beltran C, Naik M, Merchant TE (2010) Dosimetric effect of target expansion and setup uncertainty during radiation therapy in pediatric craniopharyngioma. Radiother Oncol 97(3):399–403

    Article  PubMed  Google Scholar 

  5. Li J, Bentzen SM, Li J, Renschler M, Mehta MP (2008) Relationship between neurocognitive function and quality of life after whole-brain radiotherapy in patients with brain metastasis. Int J Radiat Oncol Biol Phys 71(1):64–70

    Article  PubMed  Google Scholar 

  6. Schnegg CI, Kooshki M, Hsu FC, Sui G, Robbins ME (2012) PPARδ prevents radiation-induced proinflammatory responses in microglia via transrepression of NF-kappaB and inhibition of the PKCα/MEK1/2/ERK1/2/AP-1 pathway. Free RadicBiol Med 52(9):1734–1743

    Article  CAS  Google Scholar 

  7. Liu JL, Tian DS, Li ZW, Qu WS, Zhan Y, Xie MJ, Yu ZY, Wang W et al (2010) Tamoxifen alleviates irradiation-induced brain injury by attenuating microglial inflammatory response in vitro and in vivo. Brain Res 1316:101–111

    Article  CAS  PubMed  Google Scholar 

  8. Zhao W, Robbins ME (2009) Inflammation and chronic oxidative stress in radiation-induced late normal tissue injury: therapeutic implications. Curr Med Chem 16(2):130–143

    Article  CAS  PubMed  Google Scholar 

  9. Dong X, Luo M, Huang G, Zhang J, Tong F, Cheng Y, Cai Q, Dong J et al (2015) Relationship between irradiation-induced neuro-inflammatory environments and impaired cognitive function in the developing brain of mice. Int J Radiat Biol 91(3):224–239

    Article  CAS  PubMed  Google Scholar 

  10. Stoll G, Jander S (1999) The role of microglia and macrophages in the pathophysiology of the CNS. Prog Neurobiol 58(3):233–247

    Article  CAS  PubMed  Google Scholar 

  11. Gebicke-Haerter PJ (2001) Microglia in neurodegeneration: molecular aspects. Microsc Res Tech 54(1):47–58

    Article  CAS  PubMed  Google Scholar 

  12. Pocock JM, Liddle AC (2001) Microglial signalling cascades in neurodegenerative disease. Prog Brain Res 132:555–565

    Article  CAS  PubMed  Google Scholar 

  13. Luo XG, Chen SD (2012) The changing phenotype of microglia from homeostasis to disease. Transl Neurodegener 1(1):9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xue J, Dong JH, Huang GD, Qu XF, Wu G, Dong XR (2014) NF-κB signaling modulates radiation-induced microglial activation. Oncol Rep 31(6):2555–60

    CAS  PubMed  Google Scholar 

  15. Kyrkanides S, Moore AH, Olschowka JA, Daeschner JC, Williams JP, Hansen JT, Kerry OM (2002) Cyclooxygenase-2 modulates brain inflammation-related gene expression in central nervous system radiation injury. Brain Res Mol Brain Res 104(2):159–169

    Article  CAS  PubMed  Google Scholar 

  16. Hutchins AP, Poulain S, Miranda-Saavedra D (2012) Genome-wide analysis of STAT3 binding in vivo predicts effectors of the anti-inflammatory response in macrophages. Blood 119(13):e110–9

    Article  CAS  PubMed  Google Scholar 

  17. Zhang ZH, Yu LJ, Hui XC, Wu ZZ, Yin KL, Yang H, Xu Y (2014) Hydroxy-safflor yellow A attenuates Aβ1-42-induced inflammation by modulating the JAK2/STAT3/NF-KB pathway. Brain Res 1563:72–80

    Article  CAS  PubMed  Google Scholar 

  18. Shen ZQ, Dong ZJ, Peng H, Liu JK (2003) Modulation of PAI-1 and tPA activity and thrombolytic effects of corilagin. Planta Med 69(12):1109–1112

    Article  CAS  PubMed  Google Scholar 

  19. Duan W, Yu Y, Zhang L (2005) Antiatherogenic effects of phyllanthusemblica associated with corilagin and its analogue. YakugakuZasshi 125(7):587–591

    CAS  Google Scholar 

  20. Bharti S, Nidhi V, Juan PM (2014) Aparajita M (2014) An overview of important ethnomedicinal herbs of Phyllanthus species: present status and future prospects. Sci World J 2014:839172

    Google Scholar 

  21. Shibuya H, Kitagawa I (1996) Chemical study of Indonesian medicinal plants. J Pharm Soc Jpn 116(12):911–27

    CAS  Google Scholar 

  22. Kinoshita S, Inoue Y, Nakama S, Ichiba T, Aniya Y (2007) Antioxidant and hepatoprotective actions of medicinal herb Terminalia catappa L. from Okinawa Island and its tannin corilagin. Phytomedicine 14(11):755–762

    Article  CAS  PubMed  Google Scholar 

  23. Cheng JT, Lin TC, Hsu FL (1995) Antihypertensive effect of corilagin in the rat. Can J Physiol Pharmacol 73(10):1425–1429

    Article  CAS  PubMed  Google Scholar 

  24. Guo YJ, Luo T, Wu F, Liu H, Li HR, Mei YW, Zhang SL, Tao JY et al (2014) Corilagin protects against HSV1 encephalitis through inhibiting the TLR2 signaling pathways in vivo and in vitro. Mol Neurobiol. doi:10.1007/s12035-014-8947-7

    PubMed Central  Google Scholar 

  25. Dong XR, Luo M, Fan L, Zhang T, Liu L, Dong JH, Wu G (2010) Corilagin inhibits the double strand break-triggered NF-kappaB pathway in irradiated microglial cells. Int J Mol Med 25(4):531–536

    CAS  PubMed  Google Scholar 

  26. Schindler MK, Forbes ME, Robbins ME, Riddle DR (2008) Aging-dependent changes in the radiation response of the adult rat brain. Int J Radiat Oncol Biol Phys 70(3):826–834

    Article  PubMed  Google Scholar 

  27. Zhu L, Zhang L, Zhan L, Lu X, Peng J, Liang L, Liu Y, Zheng L et al (2014) The effects of Zibu Piyin Recipe components on scopolamine-induced learning and memory impairment in the mouse. J Ethnopharmacol 151(1):576–582

    Article  CAS  PubMed  Google Scholar 

  28. Cevik NG, Orhan N, Yilmaz CU, Arican N, Ahishali B, Kucuk M, Kaya M, Toklu AS (2013) The effects of hyperbaric air and hyperbaric oxygen on blood–brain barrier integrity in rats. Brain Res 1531:113–121

    Article  CAS  PubMed  Google Scholar 

  29. Overbergh L, Giulietti A, Valckx D, Decallonne R, Bouillon R, Mathieu C (2003) The use of real-time reverse transcriptase PCR for the quantification of cytokine gene expression. J Biomol Tech 14(1):33–43

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ivanov VN, Hei TK (2014) A role for TRAIL/TRAIL-R2 in radiation-induced apoptosis and radiation-induced bystander response of human neural stem cells. Apoptosis 19(3):399–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Austyn JM, Gordon S (1981) F4/80, a monoclonal antibody directed specifically against the mouse macrophage. Eur J Immunol 11(10):805–15

    Article  CAS  PubMed  Google Scholar 

  32. Stone HB, Moulder JE, Coleman CN, Ang KK, Anscher MS, Barcellos-Hoff MH, Dynan WS, Fike JR et al (2004) Models for evaluating agents intended for the prophylaxis, mitigation and treatment of radiation injuries. Report of an NCI Workshop, December 3–4, 2003. Radiat Res 162(6):711–728

    Article  CAS  PubMed  Google Scholar 

  33. Moulder JE, Cohen EP (2007) Future strategies for mitigation and treatment of chronic radiation-induced normal tissue injury. Semin Radiat Oncol 17(2):141–8

    Article  PubMed  Google Scholar 

  34. Warrington JP, Csiszar A, Mitschelen M, Lee YW, Sonntag WE (2012) Whole brain radiation-induced impairments in learning and memory are time-sensitive and reversible by systemic hypoxia. PLoS One 7(1), e30444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Acharya MM, Christie LA, Lan ML, Donovan PJ, Cotman CW, Fike JR, Limoli CL (2009) Rescue of radiation-induced cognitive impairment through cranial transplantation of human embryonic stem cells. Proc Natl AcadSci USA 106(45):19150–19155

    Article  CAS  Google Scholar 

  36. Diserbo M, Agin A, Lamproglou I, Mauris J, Staali F, Multon E, Amourette C (2002) Blood–brain barrier permeability after gamma whole-body irradiation: an in vivo microdialysis study. Can J Physiol Pharmacol 80(7):670–678

    Article  CAS  PubMed  Google Scholar 

  37. Nordal RA, Wong CS (2005) Molecular targets in radiation-induced blood–brain barrier disruption. Int J Radiat Oncol Biol Phys 62(1):279–287

    Article  CAS  PubMed  Google Scholar 

  38. Hong JH, Chiang CS, Campbell IL, Sun JR, Withers HR, McBride WH (1995) Induction of acute phase gene expression by brain irradiation. Int J Radiat Oncol. Biol Phys 33(3):619–626

    CAS  Google Scholar 

  39. Gaber MW, Sabek OM, Fukatsu K, Wilcox HG, Kiani MF, Merchant TE (2003) Differences in ICAM-1 and TNF-alpha expression between large single fraction and fractionated irradiation in mouse brain. Int J Radiat Biol 79(5):359–366

    Article  CAS  PubMed  Google Scholar 

  40. Lee WH, Sonntag WE, Mitschelen M, Yan H, Lee YW (2010) Irradiation induces regionally specific alterations in pro-inflammatory environments in rat brain. Int J Radiat Biol 86(2):132–144

    Article  PubMed  PubMed Central  Google Scholar 

  41. Conner KR, Forbes ME, Lee WH, Lee YW, Riddle DR (2011) AT1 receptor antagonism does not influence early radiation-induced changes in microglial activation or neurogenesis in the normal rat brain. Radiat Res 176(1):71–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang J, Tong F, Cai Q, Chen L-j, Dong J-h, Wu G, Dong X-r (2015) Shenqi Fuzheng Injection attenuates irradiationinduced brain injury in mice via inhibition of the NF-κB signaling pathway and microglial activation. Acta Pharmacol Sin 36:1288–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ross PJ, Ashley S, Norton A, Priest K, Waters JS, Eisen T, Smith IE, O’Brien MER (2004) Do patients with weight loss have a worse outcome when undergoing chemotherapy for lung cancers? Br J Cancer 90:1905–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Langius JAE, Bakker S, Rietveld DHF, Kruizenga HM, Langendijk JA, Weijs PJM, Leemans CR (2013) Critical weight loss is a major prognostic indicator for disease-specific survival in patients with head and neck cancer receiving radiotherapy. Br J Cancer 109:1093–1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rola R, Raber J, Rizk A, Otsuka S, VandenBerg SR, Morhardt DR, Fike JR (2004) Radiation-induced impairment of hippocampal neurogenesis is associated with cognitive deficits in young mice. Exp Neurol 188(2):316–330

    Article  CAS  PubMed  Google Scholar 

  46. Baker DG, Krochak RJ (1989) The response of the microvascular system to radiation: a review. Cancer Invest 7(3):287–294

    Article  CAS  PubMed  Google Scholar 

  47. Rubin P, Gash DM, Hansen JT, Nelson DF, Williams JP (1994) Disruption of the blood–brain barrier as the primary effect of CNS irradiation. Radiother Oncol 31(1):51–60

    Article  CAS  PubMed  Google Scholar 

  48. Barichello T, Lemos JC, Generoso JS, Cipriano AL, Milioli GL, Marcelino DM, Vuolo F, Petronilho F et al (2011) Oxidative stress, cytokine/chemokine and disruption of blood–brain barrier in neonate rats after meningitis by Streptococcus agalactiae. Neurochem Res 36(10):1922–30

    Article  CAS  PubMed  Google Scholar 

  49. Takata F, Dohgu S, Matsumoto J, Takahashi H, Machida T, Wakigawa T, Harada E, Miyaji H et al (2011) Brain pericytes among cells constituting the blood–brain barrier are highly sensitive to tumor necrosis factor-α, releasing matrix metalloproteinase-9 and migrating in vitro. J Neuroinflammation 8:106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu T, Zhang T, Yu H, Shen H, Xia W (2014) Adjudin protects against cerebral ischemia reperfusion injury by inhibition of neuroinflammation and blood–brain barrier disruption. J Neuroinflammation 11:107

    Article  PubMed  PubMed Central  Google Scholar 

  51. Li L, McBride DW, Doycheva D, Dixon BJ, Krafft PR, Zhang JH, Tang J (2015) G-CSF attenuates neuroinflammation and stabilizes the blood–brain barrier via the PI3K/Akt/GSK-3β signaling pathway following neonatal hypoxia-ischemia in rats. Exp Neurol pii: S0014–4886(15):00005–9

    Google Scholar 

  52. Lee YW, Hennig B, Toborek M (2003) Redox-regulated mechanisms of IL-4-induced MCP-1 expression in human vascular endothelial cells. Am J Physiol Heart Circ Physiol 284(1):H185–92

    Article  CAS  PubMed  Google Scholar 

  53. Greene-Schloesser D, Robbins ME (2012) Radiation-induced cognitive impairment from bench to bedside. Neuro Oncol 14(4):iv37–44

    PubMed  PubMed Central  Google Scholar 

  54. Rübe CE, Wilfert F, Palm J, König J, Burdak-Rothkamm S, Liu L, Schuck A, Willich N et al (2004) Irradiation induces a biphasic expression of pro-inflammatory cytokines in the lung. Strahlenther Onkol 180(7):442–8

    Article  PubMed  Google Scholar 

  55. Ardestani S, Deskins DL, Young PP (2013) Membrane TNF-alpha-activated programmed necrosis is mediated by Ceramide-induced reactive oxygen species. J Mol Signal 8(1):12–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rübe CE, Wilfert F, Uthe D, Schmid KW, Knoop R, Willich N, Schuck A, Rübe C (2001) Modulation of radiation-induced tumor necrosis factor (TNF-α) expression in the lung tissue by pentoxifylline. Radiother Oncol 64:177–87

    Article  Google Scholar 

  57. Welte T, Zhang SS, Wang T, Zhang Z, Hesslein DG, Yin Z, Kano A, Iwamoto Y et al (2003) STAT3 deletion during hematopoiesis causes Crohn’s disease-like pathogenesis and lethality: a critical role of STAT3 in innate immunity. Proc Natl Acad Sci U S A 100(4):1879–1884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gautron L, De Smedt-Peyrusse V, Layé S (2006) Characterization of STAT3-expressing cells in the postnatal rat brain. Brain Res 1098(1):26–32

    Article  CAS  PubMed  Google Scholar 

  59. Smith AM, Qualls JE, O’Brien K, Balouzian L, Johnson PF, Schultz-Cherry S, Smale ST, Murray PJ (2011) A distal enhancer in Il12b is the target of transcriptional repression by the STAT3 pathway and requires the basic leucine zipper (B-ZIP) protein NFIL3. J Biol Chem 286(26):23582–23590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mandal P, Park PH, McMullen MR, Pratt BT, Nagy LE (2010) The anti-inflammatory effects of adiponectin are mediated via a heme oxygenase-1-dependent pathway in rat Kupffer cells. Hepatology 51(4):1420–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yu Z, Zhang W, Kone BC (2002) Signal transducers and activators of transcription 3 (STAT3) inhibits transcription of the inducible nitric oxide synthase gene by interacting with nuclear factor kappaB. Biochem J 367(Pt 1):97–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fu XY (2006) STAT3 in immune responses and inflammatory bowel diseases. Cell Res 6(2):214–219

    Article  CAS  Google Scholar 

  63. Chiba T, Yamada M, Sasabe J, Terashita K, Shimoda M, Matsuoka M, Aiso S (2009) Amyloid-beta causes memory impairment by disturbing the JAK2/STAT3 axis in hippocampal neurons. Mol Psychiatry 14(2):206–222

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study is sponsored by the National Nature Science Foundation of China (nos. 81172595 and 81573090), Post-doctoral Program foundation of China (no. 20100480905), and a grant from the Foundation of Special Post-doctoral Program of China (201104440).

Conflict of Interest

No potential conflicts of interest were disclosed.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Wu or Xiaorong Dong.

Additional information

Fan Tong and Jian Zhang are considered co-first authors.

Fan Tong and Jian Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, F., Zhang, J., Liu, L. et al. Corilagin Attenuates Radiation-Induced Brain Injury in Mice. Mol Neurobiol 53, 6982–6996 (2016). https://doi.org/10.1007/s12035-015-9591-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9591-6

Keywords

Navigation