Skip to main content

Advertisement

Log in

Exacerbation of Methamphetamine Neurotoxicity in Cold and Hot Environments: Neuroprotective Effects of an Antioxidant Compound H-290/51

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

In this study, we examined the influence of cold and hot environments on methamphetamine (METH) neurotoxicity in both drug-naive rats and animals previously exposed to different types of nanoparticles (NPs). Since METH induces oxidative stress, we also examined how a potential chain-breaking antioxidant H-290/51 (Astra-Zeneca, Mölndal, Sweden) affects METH-induced neurotoxicity. Exposure of drug-naive rats to METH (9 mg/kg, s.c.) at 4, 21, or 34 °C for 3 h resulted in breakdown of the blood-brain barrier (BBB), brain edema, and neuronal injuries, which all differed in severity depending upon ambient temperatures. The changes were moderate at 21 °C, 120–180 % larger at 34 °C, and almost absent at 4 °C. In rats chronically treated with NPs (SiO2, Cu, or Ag; 50–60 nm, 50 mg/kg, i.p. for 7 days), METH-induced brain alterations showed a two- to fourfold increase at 21 °C, a four- to sixfold increase at 34 °C, and three- to fourfold increase at 4 °C. SiO2 exposure showed the most pronounced METH-induced brain pathology at all temperatures followed by Ag and Cu NPs. Pretreatment with a potent antioxidant compound H-290/51 (50 mg/kg, p.o., 30 min before METH) significantly reduced brain pathology in naive animals exposed to METH at 21 and 34 °C. In NPs-treated animals, however, attenuation of METH-induced brain pathology occurred only after repeated exposure of H-290/51 (−30 min, 0 min, and +30 min). These observations are the first to show that NPs exacerbate METH-induced brain pathology in both cold and hot environments and demonstrate that timely intervention with antioxidant H-290/51 could have neuroprotective effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ellinwood EH, Cohen S (1971) Amphetamine abuse. Science 171:420–421

    Article  CAS  PubMed  Google Scholar 

  2. Marquine MJ, Iudicello JE, Morgan EE, Brown GG, Letendre SL, Ellis RJ, Deutsch R, Woods SP et al (2014) “Frontal systems” behaviors in comorbid human immunodeficiency virus infection and methamphetamine dependency. Psychiatry Res 215:208–216

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Lecomte T, Mueser KT, MacEwan W, Thornton AE, Buchanan T, Bouchard V, Goldner E, Brink J et al (2013) Predictors of persistent psychotic symptoms in persons with methamphetamine abuse receiving psychiatric treatment. J Nerv Ment Dis 201:1085–1089

    Article  PubMed  Google Scholar 

  4. Fletcher JB, Reback CJ (2013) Antisocial personality disorder predicts methamphetamine treatment outcomes in homeless, substance-dependent men who have sex with men. J Subst Abus Treat 45:266–272

    Article  Google Scholar 

  5. Embry D, Hankins M, Biglan A, Boles S (2009) Behavioral and social correlates of methamphetamine use in a population-based sample of early and later adolescents. Addict Behav 34:343–351

    Article  PubMed Central  PubMed  Google Scholar 

  6. Iritani BJ, Hallfors DD, Bauer DJ (2007) Crystal methamphetamine use among young adults in the USA. Addiction 102:1102–1113

    Article  PubMed  Google Scholar 

  7. Jones HE, Myers B, O’Grady KE, Gebhardt S, Theron GB, Wechsberg WM (2014) Initial feasibility and acceptability of a comprehensive intervention for methamphetamine-using pregnant women in South Africa. Psychiatr J 2014:929767. doi:10.1155/2014/929767

    Article  Google Scholar 

  8. Werb D, Kerr T, Buxton J, Shoveller J, Richardson C, Montaner J, Wood E (2013) Crystal methamphetamine and initiation of injection drug use among street-involved youth in a Canadian setting. CMAJ 185:1569–1575

    Article  PubMed Central  PubMed  Google Scholar 

  9. Shariatirad S, Maarefvand M, Ekhtiari H (2013) Emergence of a methamphetamine crisis in Iran. Drug Alcohol Rev 32:223–224

    Article  PubMed  Google Scholar 

  10. Li L, Assanangkornchai S, Duo L, McNeil E, Li J (2014) Cross-border activities and association with current methamphetamine use among Chinese injection drug users (IDUs) in a China-Myanmar border region. Drug Alcohol Depend 138:48–53

    Article  PubMed  Google Scholar 

  11. Shukla RK, Crump JL, Chrisco ES (2012) An evolving problem: methamphetamine production and trafficking in the United States. Int J Drug Policy 23:426–435

    Article  PubMed  Google Scholar 

  12. Verdichevski M, Burns R, Cunningham JK, Tavares J, Callaghan RC (2011) Trends in primary methamphetamine-related admissions to youth residential substance abuse treatment facilities in Canada, 2005–2006 and 2009–2010. Can J Psychiatry 56:696–700

    PubMed  Google Scholar 

  13. Forcehimes AA, Venner KL, Bogenschutz MP, Foley K, Davis MP, Houck JM, Willie EL, Begaye P (2011) American Indian methamphetamine and other drug use in the southwestern United States. Cult Divers Ethn Minor Psychol 17:366–376

    Article  Google Scholar 

  14. Platteborze PL, Kippenberger DJ, Martin TM (2013) Drug positive rates for the army, army reserve, and army national guard from fiscal year 2001 through 2011. Mil Med 10:1078–1084

    Article  Google Scholar 

  15. Lacy BW, Ditzler TF, Wilson RS, Martin TM, Ochikubo JT, Roussel RR, Pizarro-Matos JM, Vazquez R (2008) Regional methamphetamine use among U.S. Army personnel stationed in the continental United States and Hawaii: a six-year retrospective study (2000–2005). Mil Med 173:353–358

    Article  PubMed  Google Scholar 

  16. Defalque RJ, Wright AJ (2011) Methamphetamine for Hitler’s Germany: 1937 to 1945. Bull Anesth Hist 29(21-4):32

    Google Scholar 

  17. Patnaik R, Sharma A, Kiyatkin EA, Nozari A, Sharma HS (2013) Nanoparticles exacerbate methamphetamine neurotoxicity in both hot and cold environment. Neuroprotective effects of an antioxidant compound H-290/51. Soc Neurosci Abstr 43:813.27/L18

    Google Scholar 

  18. Sharma HS, Muresanu DF, Patnaik R, Sharma A (2013) Exacerbation of brain pathology after partial restraint in hypertensive rats following SiO2 nanoparticles exposure at high ambient temperature. Mol Neurobiol 48:368–379

    Article  CAS  PubMed  Google Scholar 

  19. Sharma HS, Muresanu DF, Sharma A, Patnaik R, Lafuente JV (2009) Nanoparticles influence pathophysiology of spinal cord injury and repair. Prog Brain Res 180:154–180

    Article  PubMed  Google Scholar 

  20. Sharma HS, Ali SF, Tian ZR, Hussain SM, Schlager JJ, Sjöquist PO, Sharma A, Muresanu DF (2009) Chronic treatment with nanoparticles exacerbate hyperthermia induced blood-brain barrier breakdown, cognitive dysfunction and brain pathology in the rat. Neuroprotective effects of nanowired antioxidant compound H-290/51. J Nanosci Nanotechnol 9:5073–5090

    Article  CAS  PubMed  Google Scholar 

  21. Kiyatkin EA, Brown PL, Sharma HS (2007) Brain edema and breakdown of the blood-brain barrier during methamphetamine intoxication: critical role of brain hyperthermia. Eur J Neurosci 26:1242–1253

    Article  PubMed  Google Scholar 

  22. Sharma HS, Kiyatkin EA (2009) Rapid morphological brain abnormalities during acute methamphetamine intoxication in the rat: an experimental study using light and electron microscopy. J Chem Neuroanat 37:18–32

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Kiyatkin EA, Sharma HS (2009) Acute methamphetamine intoxication: brain hyperthermia, blood-brain barrier, brain edema, and morphological cell abnormalities. Int Rev Neurobiol 88:65–100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Toborek M, Seelbach MJ, Rashid CS, András IE, Chen L, Park M, Esser KA (2013) Voluntary exercise protects against methamphetamine-induced oxidative stress in brain microvasculature and disruption of the blood-brain barrier. Mol Neurodegener 8:22. doi:10.1186/1750-1326-8-22

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Solhi H, Malekirad A, Kazemifar AM, Sharifi F (2014) Oxidative stress and lipid peroxidation in prolonged users of methamphetamine. Drug Metab Lett 7:79–82

    PubMed  Google Scholar 

  26. Patlolla AK, Hackett D, Tchounwou PB (2014) Silver nanoparticle-induced oxidative stress-dependent toxicity in Sprague-Dawley rats. Mol Cell Biochem 399:257–268

    Article  PubMed  Google Scholar 

  27. Han JW, Gurunathan S, Jeong JK, Choi YJ, Kwon DN, Park JK, Kim JH (2014) Oxidative stress mediated cytotoxicity of biologically synthesized silver nanoparticles in human lung epithelial adenocarcinoma cell line. Nanoscale Res Lett 9(1):459. doi:10.1186/1556-276X-9-459. eCollection 2014

    Article  PubMed Central  PubMed  Google Scholar 

  28. Committee for the Update of the Guide for the Care and Use of Laboratory Animals (2011) 8th edn. The National Academic Press, Washington DC. http://www.nap.edu

  29. Sharma HS, Ali SF, Hussain SM, Schlager JJ, Sharma A (2009) Influence of engineered nanoparticles from metals on the blood-brain barrier permeability, cerebral blood flow, brain edema and neurotoxicity. An experimental study in the rat and mice using biochemical and morphological approaches. J Nanosci Nanotechnol 9:5055–5072

    Article  CAS  PubMed  Google Scholar 

  30. Sharma HS, Sharma A (2007) Nanoparticles aggravate heat stress induced cognitive deficits, blood-brain barrier disruption, edema formation and brain pathology. Prog Brain Res 162:245–273

    Article  CAS  PubMed  Google Scholar 

  31. Elliott KA, Jasper HH (1949) Measurement of experimentally induced brain swelling and shrinkage. Am J Physiol 157:122–129

    CAS  PubMed  Google Scholar 

  32. Sharma HS, Sjöquist P-O (2002) A new antioxidant compound H-290/51 modulates glutamate and GABA immunoreactivity in the rat spinal cord following trauma. Amino Acids 23:261–272

    Article  CAS  PubMed  Google Scholar 

  33. Sharma HS, Olsson Y, Cervós-Navarro J (1993) p-Chlorophenylalanine, a serotonin synthesis inhibitor, reduces the response of glial fibrillary acidic protein induced by trauma to the spinal cord. Acta Neuropathol (Berlin) 86:422–427

    CAS  Google Scholar 

  34. Sharma HS, Zimmer C, Westman J, Cervós-Navarro J (1992) Acute systemic heat stress increases glial fibrillary acidic protein immunoreactivity in brain. An experimental study in the conscious normotensive young rats. Neuroscience 48:889–901

    Article  CAS  PubMed  Google Scholar 

  35. Zimmer C, Sampaolo S, Sharma HS, Cervós-Navarro J (1991) Glial fibrillary acidic protein immunoreactivity in rat brain following chronic hypoxia. Neuroscience 40:353–361

    Article  CAS  PubMed  Google Scholar 

  36. Mustafa A, Sharma HS, Olsson Y, Gordh T, Thoren P, Sjoquist PO, Roos P, Adem A et al (1995) Vascular permeability to growth hormone in the rat central nervous system after focal spinal cord injury. Influence of a new anti-oxidant H 290/51 and age. Neurosci Res 23:185–194

    Article  CAS  PubMed  Google Scholar 

  37. Sharma HS, Dey PK (1987) Influence of long-term acute heat exposure on regional blood-brain barrier permeability, cerebral blood flow and 5-HT level in conscious normotensive young rats. Brain Res 424:153–162

    Article  CAS  PubMed  Google Scholar 

  38. Sharma HS, Dey PK (1986) Influence of long-term immobilization stress on regional blood-brain barrier permeability, cerebral blood flow and 5-HT level in conscious normotensive young rats. J Neurol Sci 72:61–76

    Article  CAS  PubMed  Google Scholar 

  39. Sharma HS, Dey PK (1986) Probable involvement of 5-hydroxytryptamine in increased permeability of blood-brain barrier under heat stress. Neuropharmacology 25:161–167

    Article  CAS  PubMed  Google Scholar 

  40. Sharma HS, Ali SF (2006) Alterations in blood-brain barrier function by morphine and methamphetamine. Ann N Y Acad Sci 1074:198–224

    Article  CAS  PubMed  Google Scholar 

  41. Sharma HS, Sjöquist PO, Ali SF (2007) Drugs of abuse-induced hyperthermia, blood-brain barrier dysfunction and neurotoxicity: neuroprotective effects of a new antioxidant compound H-290/51. Curr Pharm Des 13:1903–1923

    Article  CAS  PubMed  Google Scholar 

  42. Sharma HS, Menon P, Lafuente JV, Muresanu DF, Tian ZR, Patnaik R, Sharma A (2014) Development of in vivo drug-induced neurotoxicity models. Expert Opin Drug Metab Toxicol 13:1–25

    Google Scholar 

  43. Kiyatkin EA, Sharma HS (2012) Environmental conditions modulate neurotoxic effects of psychomotor stimulant drugs of abuse. Int Rev Neurobiol 102:147–171

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Kiyatkin EA, Sharma HS (2009) Permeability of the blood-brain barrier depends on brain temperature. Neuroscience 161:926–939

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Sharma HS, Cervós-Navarro J, Dey PK (1991) Increased blood-brain barrier permeability following acute short-term forced-swimming exercise in conscious normotensive young rats. Neurosci Res 10:211–221

    Article  CAS  PubMed  Google Scholar 

  46. Sharma HS, Westman J, Cervós-Navarro J, Dey PK, Nyberg F (1995) Probable involvement of serotonin in the increased permeability of the blood-brain barrier by forced swimming. An experimental study using Evans blue and 131I-sodium tracers in the rat. Behav Brain Res 72:189–196

    Article  CAS  PubMed  Google Scholar 

  47. Sharma A, Muresanu DF, Patnaik R, Sharma HS (2013) Size- and age-dependent neurotoxicity of engineered metal nanoparticles in rats. Mol Neurobiol 48:386–396

    Article  CAS  PubMed  Google Scholar 

  48. Sharma HS, Sharma A (2012) Nanowired drug delivery for neuroprotection in central nervous system injuries: modulation by environmental temperature, intoxication of nanoparticles, and comorbidity factors. Nanomed Nanobiotechnol 4:184–203

    Article  CAS  Google Scholar 

  49. Sharma HS, Sharma A (2013) New perspectives of nanoneuroprotection, nanoneuropharmacology and nanoneurotoxicity: modulatory role of amino acid neurotransmitters, stress, trauma, and co-morbidity factors in nanomedicine. Amino Acids 45:1055–1071

    Article  CAS  PubMed  Google Scholar 

  50. Wang XZ, Yang Y, Li R, McGuinnes C, Adamson J, Megson IL, Donaldson K (2014) Principal component and causal analysis of structural and acute in vitro toxicity data for nanoparticles. Nanotoxicology 8:465–476

    Article  CAS  PubMed  Google Scholar 

  51. Sharma HS, Patnaik R, Sharma A, Sjöquist PO, Lafuente JV (2009) Silicon dioxide nanoparticles (SiO2, 40–50 nm) exacerbate pathophysiology of traumatic spinal cord injury and deteriorate functional outcome in the rat. An experimental study using pharmacological and morphological approaches. J Nanosci Nanotechnol 9:4970–4980

    Article  CAS  PubMed  Google Scholar 

  52. Sharma HS, Sharma A (2012) Neurotoxicity of engineered nanoparticles from metals. CNS Neurol Disord Drug Targets 11:65–80

    Article  CAS  PubMed  Google Scholar 

  53. Sharma A, Muresanu DF, Mössler H, Sharma HS (2012) Superior neuroprotective effects of cerebrolysin in nanoparticle-induced exacerbation of hyperthermia-induced brain pathology. CNS Neurol Disord Drug Targets 11:7–25

    Article  CAS  PubMed  Google Scholar 

  54. Sharma HS (2011) Early microvascular reactions and blood-spinal cord barrier disruption are instrumental in pathophysiology of spinal cord injury and repair: novel therapeutic strategies including nanowired drug delivery to enhance neuroprotection. J Neural Transm 118:155–176

    Article  CAS  PubMed  Google Scholar 

  55. Tian ZR, Sharma A, Nozari A, Subramaniam R, Lundstedt T, Sharma HS (2012) Nanowired drug delivery to enhance neuroprotection in spinal cord injury. CNS Neurol Disord Drug Targets 11:86–95

    Article  CAS  PubMed  Google Scholar 

  56. Muresanu DF, Sharma A, Tian ZR, Smith MA, Sharma HS (2012) Nanowired drug delivery of antioxidant compound H-290/51 enhances neuroprotection in hyperthermia-induced neurotoxicity. CNS Neurol Disord Drug Targets 11:50–64

    Article  CAS  PubMed  Google Scholar 

  57. Sharma A, Muresanu DF, Lafuente JV, Menon P, Patnaik R, Tian ZR, Mössler H, Sharma HS (2014) Nanodelivery of cerebrolysin as adjunct therapy with functionalized magnetic iron oxide nanoparticles enhances neuroprotection following whole body hyperthermia. In Proceedings National Innovations Summit & Showcase, vol. 2. National Harbor, Washington DC, June 15-18, 2014, Technical Innovation Nr. 613. Advanced Materials & Applications, NSTI-Nanotech 2014. www.nsti.org. ISBN 978-1-4822-5827-1, pp 363–366

  58. Ruozi B, Belletti D, Forni F, Sharma A, Muresanu D, Mössler H, Vandelli MA, Tosi G et al (2014) Poly (D, L-lactide-co-glycolide) nanoparticles loaded with cerebrolysin display neuroprotective activity in a rat model of concussive head injury. CNS Neurol Disord Drug Targets 13:1475–1482

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This investigation is supported by grants from the Air Force Office of Scientific Research (EOARD, London, UK) and Air Force Material Command, USAF, under grant number FA8655-05-1-3065; Swedish Medical Research Council (Nr 2710-HSS), Swedish Strategic Research Foundation, Stockholm, Sweden; Göran Gustafsson Foundation, Stockholm, Sweden (HSS), Astra-Zeneca, Mölndal, Sweden (HSS/AS), The University Grants Commission, New Delhi, India (HSS/AS), Ministry of Science and Technology, Gov’t. of India and Gov’t. of Sweden (HSS/AS), Indian Medical Research Council, New Delhi, India (HSS/AS); India-EU Research Co-operation Program (RP/AS/HSS) and IT 794/13 (JVL), Government of Basque Country and UFI 11/32 (JVL); University of Basque Country, Spain. This study also is supported in part by the National Institute on Drug Abuse—Intramural Research Program, NIH (EAK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hari Shanker Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, H.S., Kiyatkin, E.A., Patnaik, R. et al. Exacerbation of Methamphetamine Neurotoxicity in Cold and Hot Environments: Neuroprotective Effects of an Antioxidant Compound H-290/51. Mol Neurobiol 52, 1023–1033 (2015). https://doi.org/10.1007/s12035-015-9252-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9252-9

Keywords

Navigation