Skip to main content

Advertisement

Log in

HIV Tat-Mediated Induction of Human Brain Microvascular Endothelial Cell Apoptosis Involves Endoplasmic Reticulum Stress and Mitochondrial Dysfunction

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Endoplasmic reticulum (ER) stress triggered under hyperglycemic, hypoxic, and oxidative conditions has been implicated in cellular dysfunction through activation of the unfolded protein response (UPR). Recent clinical studies have documented that the release of soluble cellular and host factors following HIV infection in the central nervous system (CNS) results in induction of the ER stress response. Herein, we demonstrate that exposure of human brain microvascular endothelial cells (HBMECs) to HIV transactivator protein Tat101 resulted in early induction of several major ER stress regulators including ER chaperones Bip/GRP78 and ER stress sensors ATF6, p-PERK, and downstream mediators p-eIF2α and ATF4. Upregulation of the ER stress mediators was accompanied by decreased cell viability and increased apoptosis as evidenced by MTT and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assays, respectively. Pretreatment of HBMECs with either ER inhibitor or knockdown of the effector C/EBP homologous protein (CHOP) resulted in increased cell viability and abrogation of apoptosis following Tat exposure. Notably, Tat-mediated activation of the UPR response involved reactive oxygen species. Furthermore, treatment of Tat also resulted in mitochondrial dysfunction, evidenced by decrease in Bcl2/Bax ratio, dysfunction of mitochondrial membrane potential, and release of cytochrome c, all of which could be partially reversed by the ER stress inhibitor. The current study demonstrates that exposure of HBMECs to Tat induces multiple stress responses, including ER stress and mitochondrial dysfunction which in turn lead to apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rubin LL, Staddon JM (1999) The cell biology of the blood-brain barrier. Annu Rev Neurosci 22:11–28

    Article  CAS  PubMed  Google Scholar 

  2. Gloor SM, Wachtel M, Bolliger MF, Ishihara H, Landmann R, Frei K (2001) Molecular and cellular permeability control at the blood-brain barrier. Brain Res 36:258–264

    Article  CAS  Google Scholar 

  3. Hawkins BT, Davis TP (2005) The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57:173–185

    Article  CAS  PubMed  Google Scholar 

  4. Kraft P, Schwarz T, Gob E, Heydenreich N, Brede M, Meuth SG, Kleinschnitz C (2013) The phosphodiesterase-4 inhibitor rolipram protects from ischemic stroke in mice by reducing blood-brain-barrier damage, inflammation and thrombosis. Exp Neurol 247:80–90

    Article  CAS  PubMed  Google Scholar 

  5. Palmer AM (2011) The role of the blood brain barrier in neurodegenerative disorders and their treatment. J Alzheimers Dis 24:643–656

    CAS  PubMed  Google Scholar 

  6. Cysique LA, Brew BJ (2009) Neuropsychological functioning and antiretroviral treatment in HIV/AIDS: a review. Neuropsychol Rev 19:169–185

    Article  PubMed  Google Scholar 

  7. Feng S, Cen J, Huang Y, Shen H, Yao L, Wang Y, Chen Z (2011) Matrix metalloproteinase-2 and -9 secreted by leukemic cells increase the permeability of blood-brain barrier by disrupting tight junction proteins. PLoS One 6:e20599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Berridge MJ (2002) The endoplasmic reticulum: a multifunctional signaling organelle. Cell Calcium 32:235–249

    Article  CAS  PubMed  Google Scholar 

  9. Mori K, Sant A, Kohno K, Normington K, Gething MJ, Sambrook JF (1992) A 22 bp cis-acting element is necessary and sufficient for the induction of the yeast KAR2 (BiP) gene by unfolded proteins. EMBO J 11:2583–2593

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Marciniak SJ, Ron D (2006) Endoplasmic reticulum stress signaling in disease. Physiol Rev 86:1133–1149

    Article  CAS  PubMed  Google Scholar 

  11. Rao RV, Ellerby HM, Bredesen DE (2004) Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ 11:372–380

    Article  CAS  PubMed  Google Scholar 

  12. Upton JP, Austgen K, Nishino M, Coakley KM, Hagen A, Han D, Papa FR, Oakes SA (2008) Caspase-2 cleavage of BID is a critical apoptotic signal downstream of endoplasmic reticulum stress. Mol Cell Biol 28:3943–3951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. da Silva EF, Fonseca FA, França CN, Ferreira PR, Izar MC, Salomão R (2011) Imbalance between endothelial progenitors cells and microparticles in HIV-infected patients naive for antiretroviral therapy. AIDS 13:1595–1601

    Article  Google Scholar 

  14. Bethel-Brown C, Yao H, Callen S, Lee YH, Dash PK, Kumar A, Buch S (2011) HIV-1 Tat-mediated induction of platelet-derived growth factor in astrocytes: role of early growth response gene 1. J Immunol 186:4119–4129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Toborek M, Lee YW, Pu H, Malecki A, Flora G, Garrido R, Hennig B, Bauer HC, Nath A (2003) HIV-Tat protein induces oxidative and inflammatory pathways in brain endothelium. J Neurochem 84:169–179

    Article  CAS  PubMed  Google Scholar 

  16. Patel HH, Hamuro LL, Chun BJ, Kawaraguchi Y, Quick A, Rebolledo B, Pennypacker J, Thurston J, Rodriguez-Pinto N, Self C, Olson G, Insel PA, Giles WR, Taylor SS, Roth DM (2010) Disruption of protein kinase A localization using a trans-activator of transcription (TAT)-conjugated A-kinase-anchoring peptide reduces cardiac function. J Biol Chem 285:27632–27640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kline ER, Sutliff RL (2008) The roles of HIV-1 proteins and antiretroviral drug therapy in HIV-1-associated endothelial dysfunction. J Investig Med 56:752–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Malhotra JD, Miao H, Zhang K, Wolfson A, Pennathur S, Pipe SW, Kaufman RJ (2008) Antioxidants reduce endoplasmic reticulum stress and improve protein secretion. Proc Natl Acad Sci U S A 105:18525–18530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fleming I, Michaelis UR, Bredenkotter D, Fisslthaler B, Dehghani F, Brandes RP, Busse R (2001) Endothelium-derived hyperpolarizing factor synthase (Cytochrome P450 2C9) is a functionally significant source of reactive oxygen species in coronary arteries. Circ Res 88:44–51

    Article  CAS  PubMed  Google Scholar 

  20. Xiao H, Neuveut C, Tiffany HL, Benkirane M, Rich EA, Murphy PM, Jeang KT (2000) Selective CXCR4 antagonism by Tat: implications for in vivo expansion of coreceptor use by HIV-1. Proc Natl Acad Sci U S A 97:11466–11471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Toborek M, Lee YW, Flora G, Pu H, András IE, Wylegala E, Hennig B, Nath A (2005) Mechanisms of the blood-brain barrier disruption in HIV-1 infection. Cell Mol Neurobiol 25:181–199

    Article  PubMed  Google Scholar 

  22. Peng F, Yao H, Akturk HK, Buch S (2012) Platelet-derived growth factor CC-mediated neuroprotection against HIV Tat involves TRPC-mediated inactivation of GSK 3beta. PLoS One 7:e47572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Maingat F, Halloran B, Acharjee S, Van MG, Church D, Gill MJ, Uwiera RR, Cohen EA, Meddings J, Madsen K, Power C (2011) Inflammation and epithelial cell injury in AIDS enteropathy: involvement of endoplasmic reticulum stress. FASEB J 25:2211–2220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mahajan SD, Alinkeel R, Sykes DE, Reynolds JL, Bindukumar B, Fernandez SF (2008) Tight junction regulation by morphine and HIV-1 tat modulates blood-brain barrier permeability. J Clin Immunol 28:528–541

    Article  CAS  PubMed  Google Scholar 

  25. Midde NM, Gomez AM, Zhu J (2012) HIV-1 Tat protein decreases dopamine transporter cell surface expression and vesicular monoamine transporter-2 function in rat striatal synaptosomes. J Neuroimmune Pharmacol 7:629–639

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kruman II, Nath A, Mattson MP (1998) HIV-1 protein Tat induces apoptosis of hippocampal neurons by a mechanism involving caspase activation, calcium overload, and oxidative stress. Exp Neurol 154:276–288

    Article  CAS  PubMed  Google Scholar 

  27. Buccigrossi V, Laudiero G, Nicastro E, Miele E, Esposito F, Guarino A (2011) The HIV-1 transactivator factor (Tat) induces enterocyte apoptosis through a redox-mediated mechanism. PLoS One 6:e29436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bai L, Zhu X, Ma T, Wang J, Wang F, Zhang S (2013) The p38 MAPK NF-kappaB pathway, not the ERK pathway, is involved in exogenous HIV-1 Tat-induced apoptotic cell death in retinal pigment epithelial cells. Int J Biochem Cell Biol 45:1794–1801

    Article  CAS  PubMed  Google Scholar 

  29. Lindl KA, Akay C, Wang Y, White MG, Jordan-Sciutto KL (2007) Expression of the endoplasmic reticulum stress response marker, BiP, in the central nervous system of HIV-positive individuals. Neuropathol Appl Neurobiol 33:658–669

    Article  CAS  PubMed  Google Scholar 

  30. Moserova I, Kralova J (2012) Role of ER stress response in photodynamic therapy: ROS generated in different subcellular compartments trigger diverse cell death pathways. PLoS One 7:e32972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D (2000) Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2:326–332

    Article  CAS  PubMed  Google Scholar 

  32. Shen J, Chen X, Hendershot L, Prywes R (2002) ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev Cell 3:99–111

    Article  CAS  PubMed  Google Scholar 

  33. Yaman I, Fernandez J, Liu H, Caprara M, Komar AA, Koromilas AE, Zhou L, Snider MD, Scheuner D, Kaufman RJ, Hatzoglou M (2003) The zipper model of translational control: a small upstream ORF is the switch that controls structural remodeling of an mRNA leader. Cell 113:519–531

    Article  CAS  PubMed  Google Scholar 

  34. Kadowaki H, Nishitoh H, Ichijo H (2004) Survival and apoptosis signals in ER stress: the role of protein kinases. J Chem Neuroanat 28:93–100

    Article  CAS  PubMed  Google Scholar 

  35. Tsai CF, Yeh WL, Huang SM, Tan TW, Lu DY (2012) Wogonin induces reactive oxygen species production and cell apoptosis in human glioma cancer cells. Int J Mol Sci 13:9877–9892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tsukiyama-Kohara K (2012) Role of oxidative stress in hepatocarcinogenesis induced by hepatitis C virus. Int J Mol Sci 13:15271–15278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Santos CX, Tanaka LY, Wosniak J, Laurindo FR (2009) Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: roles of endoplasmic reticulum oxidoreductases, mitochondrial electron transport, and NADPH oxidase. Antioxid Redox Signal 11:2409–2427

    Article  CAS  PubMed  Google Scholar 

  38. Oyadomari S, Koizumi A, Takeda K, Gotoh T, Akira S, Araki E, Mori M (2002) Targeted disruption of the Chop gene delays endoplasmic reticulum stress-mediated diabetes. J Clin Investig 109:525–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Martinou JC, Youle RJ (2011) Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev Cell 21:92–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chami M, Oules B, Szabadkai G, Tacine R, Rizzuto R, Paterlini-Brechot P (2008) Role of SERCA1 truncated isoform in the proapoptotic calcium transfer from ER to mitochondria during ER stress. Mol Cell 32:641–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Giorgi C, De SD, Bononi A, Rizzuto R, Pinton P (2009) Structural and functional link between the mitochondrial network and the endoplasmic reticulum. Int J Biochem Cell Biol 41:1817–1827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants DA020392, DA023397, and DA024442 from the National Institutes of Health.

Conflict of Interest

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shilpa Buch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, R., Yang, L., Niu, F. et al. HIV Tat-Mediated Induction of Human Brain Microvascular Endothelial Cell Apoptosis Involves Endoplasmic Reticulum Stress and Mitochondrial Dysfunction. Mol Neurobiol 53, 132–142 (2016). https://doi.org/10.1007/s12035-014-8991-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8991-3

Keywords

Navigation