Skip to main content
Log in

Assessment of optical and thermal properties of polyimide/metal oxide composites for photovoltaic uses

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Novel polyimide/metal oxide composites are theoretically designed for analysis of their applicative potential as covers for photovoltaic devices. The polymer matrix is made of a common sulphone-containing aromatic diamine combined with certain cycloaliphatic dianhydrides, rendering new polymer structures. The polymer conformations and chain polarizability are affected by the matrix structure and filler loading. Optical and thermal properties of the proposed materials are described by the approach of connectivity index and group contribution method. The dianhydride moiety influenced the magnitude of refractive index, revealing that its bulkiness, asymmetry and flexibility lead to larger n-values, hence lowering the optical losses at the interface with ZnO layer from the photovoltaic cell. The presence of TiO2 filler in these polyimides upgrades matching of the refractive and coefficient of thermal expansion with those of the neighbouring ZnO layer, improving the device reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Nayshevsky I, Xu Q F, Barahman G and Lyons A M 2020 Sol. Energy Mater. Sol. Cells 206 110281

    Article  CAS  Google Scholar 

  2. Hou W, Xiao Y, Han G and Lin J-Y 2019 Polymers 11 143

    Article  Google Scholar 

  3. Znajdek K, Sibiński M, Strąkowska A and Lisik Z 2016 Opto−Electron Rev. 24 20

    Google Scholar 

  4. Hulubei C, Vlad C D, Popovici D, Stoica I, Barzic A I and Rusu D 2016 Rev. Roum. Chim. 61 797

    Google Scholar 

  5. Stoica I, Epure L, Sava I, Damian V and Hurduc N 2013 Microsc. Res. Tech. 76 914

    Article  CAS  Google Scholar 

  6. Stoica I, Sava I, Bulai G, Stoian G, Strat M, Gurlui S et al 2020 Mater. Plast. 57 94

    Article  Google Scholar 

  7. Stoica I, Epure E-L, Constantin C P, Damaceanu M D, Ursu E L and Mihaila I 2021 Nanomaterials 11 812

    Article  CAS  Google Scholar 

  8. Epure E L, Stoica I, Albu R M, Hulubei C and Barzic A I 2021 Nanomaterials 11 3107

    Article  CAS  Google Scholar 

  9. Stoica I, Sava I, Epure E L, Tiron V, Konieczkowska J and Schab-Balcerzak E 2022 Surf. Interf. 29 101743

    Article  CAS  Google Scholar 

  10. Stoica I, Barzic A I and Hulubei C 2017 Appl. Surf. Sci. 426 307

    Article  CAS  Google Scholar 

  11. Liu F, Liu Z, Gao S, You Q, Zou L, Chen J et al 2018 RSC Adv. 8 19034

    Article  CAS  Google Scholar 

  12. Ghosh M K and Mittal K L 1996 (eds) Polyimides: fundamentals and applications (USA: Marcel Dekker)

  13. Xu Z, Croft Z L, Guo D, Cao K and Liu G 2021 J. Polym. Sci. 59 943

    Article  CAS  Google Scholar 

  14. Zhuang Y, Seong J G and Lee Y M 2019 Progr. Polym. Sci. 92 35

    Article  CAS  Google Scholar 

  15. Mathews A S, Kim I and Ha C S 2007 Macromol. Res. 15 114

    Article  CAS  Google Scholar 

  16. Popovici D, Hulubei C, Cozan V, Lisa G and Bruma M 2012 High Perform. Polym. 24 194

    Article  CAS  Google Scholar 

  17. Hulubei C and Popovici D 2011 Rev. Roum. Chim. 56 209

    CAS  Google Scholar 

  18. Feenstra J, van Leest R H, Smeenk N J, Oomen G, Bongers E, Mulder P et al 2016 J. Appl. Polym. Sci. 133 1

    Article  Google Scholar 

  19. Kim H, Ku B C, Goh M, Ko H C, Ando S and You N H 2019 Macromolecules 52 827

    Article  Google Scholar 

  20. Wang Y, Zhou J, Hou J, Chen X, Sun J and Fang Q 2019 ACS Appl. Polym. Mater. 1 2099

    Article  CAS  Google Scholar 

  21. Hulubei C, Albu R M, Lisa G, Nicolescu A, Hamciuc E, Hamciuc C et al 2019 Sol. En. Mater. Sol. Cells 193 219

    Article  CAS  Google Scholar 

  22. Barzic A I, Albu R M, Stoica I and Hulubei C 2022 Compos. Sci. Technol. 218 109140

    Article  CAS  Google Scholar 

  23. Barzic A I, Albu R M and Hulubei C 2021 Rev. Roum. Chim. 66 361

    Google Scholar 

  24. Takekoshi T 1996 in M K Ghosh and K L Mittal (eds) Polyimides fundamental and applications (New York: Marcel Dekker) Chapter 2, p 7

  25. Bicerano J 1996 J. Macromol. Sci. – Rev. Macromol. Chem. Phys. C36 161

  26. Yu H C, Vijay Kumar S, Lee J H, Oh S Y and Chung C M 2015 Macromol. Res. 23 566

    Article  CAS  Google Scholar 

  27. Groh W and Zimmermann A 1991 Macromolecules 24 6660

    Article  CAS  Google Scholar 

  28. Saha S, Mehan N, Sreenivas K and Gupta V 2009 Appl. Phys. Lett. 95 071106

    Article  Google Scholar 

  29. Giles C L and Wild W J 1982 Appl. Phys. Lett. 40 210

    Article  Google Scholar 

  30. Dorohoi D O, Aflori M and Barzic A I 2017 Electromagnetic radiation in analysis and design of organic materials (New York: CRC Press)

    Book  Google Scholar 

  31. Singh M and Singh M 2013 Nanosci. Nanotechnol. Res. 1 27

    Google Scholar 

Download references

Acknowledgement

This work was supported by a grant from the Ministry of Research, Innovation and Digitization, CNCS/CCCDI—UEFISCDI, project number TE 83/1.09.2020 within PNCDI III (code PN-III-P1-1.1-TE-2019-1878).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreea Irina Barzic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barzic, A.I., Diaconu, AD., Condurache, BC. et al. Assessment of optical and thermal properties of polyimide/metal oxide composites for photovoltaic uses. Bull Mater Sci 46, 18 (2023). https://doi.org/10.1007/s12034-023-02889-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-02889-4

Keywords

Navigation