Skip to main content
Log in

High ion conducting and thixotropic nature of water-soluble xanthan gum-based electrolytes

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

This research reports the preparation and characterization of xanthan gum (XG)-based gel electrolytes (GEs) comprising sodium hydroxide salt (NaOH) in deionized water (DW). The three-dimensional gel network has been formed without using any synthetic polymer or cross-linking agents. Ionic conductivity of GEs was evaluated with different parameters, such as salt concentration, gum concentration, temperature and with the passage of time. The maximum ionic conductivity of 74.8 mS cm–1 was observed at room temperature even after 55 days for XG-based GE containing 0.625 M NaOH. A small change in pH values for XG-based GEs have been observed with temperature in the range of 10–70°C and at different time span. Thixotropic behaviour of GEs under the application of stress has also been analysed by rheological studies. There was no discernible change in ionic conductivity with temperature and with the passage of time, which make it desirable for their use in different device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Agnihotry S A, Pradeep and Sekhon S S 1999 Electrochim. Acta 44 3121

  2. Wen Y, Li G, Zhang P and Xiong G 2016 JAMP 4 189

    Article  Google Scholar 

  3. Łatoszyńska A A, Taberna P-L, Simon P and Wieczorek W 2017 Electrochim. Acta 242 31

    Article  Google Scholar 

  4. Chandra S, Sekhon S S and Arora N 2000 Ionics 6 112

    Article  CAS  Google Scholar 

  5. Ericson H, Svanberg C, Brodin A, Grillone A M, Panero S, Scrosati B et al 2000 Electrochim. Acta 45 1409

    Article  CAS  Google Scholar 

  6. Lawrence K, Canyon T and Calif 1987 US Patent: 4692273A

  7. Ferry J D 1980 (eds) Viscoelastic properties of polymers (New York: John Willey & sons)

  8. Mallik H and Sarkar A 2006 J. Non-Cryst. Solids. 352 795

    Article  CAS  Google Scholar 

  9. Singh H P, Kaur R and Sekhon S S 2003 Indian J. Eng. Mater. Sci. 10 314

    CAS  Google Scholar 

  10. Arora N, Kumar R and Kumar A 2014 IJRMET 4 68

    Google Scholar 

  11. Zulfa M A, Elfatih A H, Baraka A M and Mohamed E O 2014 J. Appl. Indust. Sci. 2 129

    Google Scholar 

  12. Carim H M 1983 US Patent: 4406827A

  13. Walker R E, Tulsa and Okla 1965 US Patent: 3215634A

  14. Vinod P M, Jeffrey D C and Terence D S 2010 EU Patent: 1819797B1

  15. Briggs D R 1934 J. Phys. Chem. 38 867

    Article  CAS  Google Scholar 

  16. Zheng Y, Monty J and Linhardt R J 2015 Carbohydr. Res. 405 23

    Article  CAS  Google Scholar 

  17. Arora N, Sharma V and Kumar R 2014 i-Manager’s. J. Mater. Sci. 1 20

    Google Scholar 

  18. Samsudin A S, Khairul W M and Isa M I N 2012 J. Non-Cryst. Solids 358 1104

    Article  CAS  Google Scholar 

  19. Choudhury N A, Northrop P W C, Crothers A C, Shruti J and Subramanian V 2012 J. Appl. Electrochem. 42 935

    Article  CAS  Google Scholar 

  20. Sudhakar Y N and Selvakumar M 2012 Electrochim. Acta 78 398

    Article  CAS  Google Scholar 

  21. Rudhziah S, Ahmad A, Ahmad I and Mohamed N S 2015 Electrochim. Acta 175 162

    Article  CAS  Google Scholar 

  22. Sudhakar Y N, Selvakumar M and Bhat D K 2015 J. Mater. Environ. Sci. 6 1218

    CAS  Google Scholar 

  23. Moniha V, Alagar M, Selvasekarapandian S, Sundaresan B and Boopathi G 2018 J. Non-Cryst. Solids 481 424

    Article  CAS  Google Scholar 

  24. Park S J, Yoo K, Kim J Y, Kim J Y, Lee D K, Kim B S et al 2013 ACS Nano 7 4050

    Article  CAS  Google Scholar 

  25. Wang Z, Dang G, Zhang Q and Xie J 2017 Int. J. Electrochem. Sci. 12 7457

    Article  CAS  Google Scholar 

  26. Caldeira I, Lüdtke A, Tavares F, Cholant C, Balboni R, Flores W H et al 2018 Ionics 24 413

    Article  CAS  Google Scholar 

  27. Pawlicka A, Tavares F C, Dörr D S, Cholant C M, Ely F, Santos M J L et al 2019 Electrochim. Acta 305 232

    Article  CAS  Google Scholar 

  28. Cameron G G 1988 Br. Polym. J. 20 299

    Article  Google Scholar 

  29. Sharma S, Dhiman N, Pathak D and Kumar R 2016 Ionics 22 1865

    Article  CAS  Google Scholar 

  30. Kumar R, Singh B and Sekhon S S 2005 J. Mater. Sci. 40 1273

    Article  CAS  Google Scholar 

  31. Bohnke O, Rousselot C, Gillet P A and Truche C 1992 J. Electrochem. Soc. 139 1862

    Article  CAS  Google Scholar 

  32. Karmann W, Weidehaas G, Howe B and Piel F 1981 US Patent: 4299231A

  33. Arora N, Sharma V, Kumar R and Kumar R 2018 Emerg. Mater. Res. 7 89

    Google Scholar 

  34. Ko M J, Lee D K, Kim H G, Kim J Y, Yoo K C, Park S J et al 2013 US Patent: 20130269781A1

  35. Francesca C, Andrea A, Giulia R, Lorenzo M, Marianna U and Rolando B 2015 Gels 1 3

    Article  Google Scholar 

  36. Anseth K S, Bowman C N and Peppas L B 1996 Biomaterials 17 1647

    Article  CAS  Google Scholar 

  37. Ortan A, Parvu C D, Ghica M V, Popescu L M and Ionita L 2011 Rom. Biotechnol. Lett. 16 47

    CAS  Google Scholar 

  38. Sharma V, Kumar R, Arora N, Singh S, Sharma N, Anand A et al 2020 J. Solid State Electrochem. 24 1337

    Article  CAS  Google Scholar 

  39. Chrisp J D 1967 US Patent: 3301723A

Download references

Acknowledgements

We are thankful to UGC and DST, New Delhi, and Principal, DAV College, Amritsar, for providing the research facilities via UGC-CPE and DST-FIST grants. We are also thankful to Dr Subheet Kumar Jain, Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India, for technical assistance. RK is thankful to the Department of Alumni Relations, Panjab University, Chandigarh, for providing partial financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narinder Arora.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, N., Sharma, V., Kumar, R. et al. High ion conducting and thixotropic nature of water-soluble xanthan gum-based electrolytes. Bull Mater Sci 46, 2 (2023). https://doi.org/10.1007/s12034-022-02840-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-022-02840-z

Keywords

Navigation