Skip to main content

Advertisement

Log in

Facile electrodeposition of feather-like Cu–Ni foam as an affordable electrocatalyst for hydrogen evolution reaction

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this study, Cu–Ni foam with different percentages of nickel and copper was fabricated by the electrodeposition method. The morphology and phase structure of deposited foams were investigated by field-emission scanning electron microscope and X-ray diffraction, respectively. Moreover, TEM was utilized to see the foam morphology and the feather-like structures in more detail. It was observed that Cu–Ni foam had a feather-like structure, and the presence of this type of structure led to an increase in the electrode/electrolyte interface. Based on the results, it was found that by adding nickel to copper, the electrocatalytic performance was improved, and the hydrogen evolution reaction (HER) activity of Cu–Ni foam was also higher than Cu foam. The electrochemical surface area of fabricated structures was measured by the electrochemical test and it was revealed that the fabricated electrode possesses a high surface area (85.9 cm2). The HER activity of electrodeposited feather-like foams was studied by linear sweep voltammetry in 1.0 M KOH, which showed that the Tafel slope of the Cu–Ni foam (50 wt% Ni) was 97 mV dec–1 and its required overpotential to attain the current density of 10 mA cm–2 was 229 mV. Overall, this research proposes a highly efficient and affordable Cu–Ni foam with remarkable electrocatalytic properties in alkaline media.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Abdel-Aal H K, Sadik M, Bassyouni M and Shalabi M 2005 Int. J. Hydrog. Energy 30 1511

    Article  CAS  Google Scholar 

  2. Ge Z, Fu B, Zhao J, Li X, Ma B and Chen Y 2020 J. Mater. Sci. 55 14081

    Article  CAS  Google Scholar 

  3. Salonen Laura M, Petrovykh D Y and Kolen’ko Yu V 2021 Mater Today Sustain. 11 100060

    Article  Google Scholar 

  4. Subhasis S, Samanta P, Bolar S, Murmu N Chandra, Khanra P and Kuila T 2021 Bull. Mater. Sci. 44 1

    Article  Google Scholar 

  5. Yadav Krishna K, Guchhait S K, Rana S and Jha M 2021 Mater Sci. Eng. B 265 114983

    Article  Google Scholar 

  6. Chandra B D, Kaur M, Pramoda K and Rao C 2020 Bull. Mater. Sci. 43 1

    Article  Google Scholar 

  7. Maryam B and Scott K 2017 ChemCatChem 9 4049

    Article  Google Scholar 

  8. Vilém B, Ulbric P and Paterová I 2021 Mater. Sci. Eng. B 267 115117

    Article  Google Scholar 

  9. Kunwar S, Pandit S, Jeong J-H and Lee J 2020 Mater. Today Sustain. 9 100045

    Article  Google Scholar 

  10. Lian J, Wu Y and Sun J 2020 J. Mater. Sci. 55 15140

    Article  CAS  Google Scholar 

  11. Cui K, Fan J, Li S, Li S, Khadidja M F, Wu J et al 2021 Mater Sci. Eng. B 263 14875

    Article  Google Scholar 

  12. Li R-Q, Wang B-L, Gao T, Zhang R, Chenyang X, Jiang X et al 2019 Nano Energy 58 870

    Article  CAS  Google Scholar 

  13. Ming Y, Yang Y, Wang K, Li S, Feng F, Lan K et al 2020 Electrochim. Acta 337 135685

    Article  Google Scholar 

  14. Zheng D, Lv C, Zhang X, Chen S, Liu H, Sun Y et al 2021 Mater. Today Sustain. 13 100074

    Article  Google Scholar 

  15. Hong Wesley T, Risch M, Stoerzinger K A, Grimaud A, Suntivich J and Shao-Horn Y 2015 Energy Environ. Sci. 8 1404

    Article  Google Scholar 

  16. Santos Diogo M F, Eugenio S, Sequeira C A C and Montemor M F 2015 ECS Trans. 64 9

    Article  Google Scholar 

  17. Marozzi C A and Chialvo A C 2001 Electrochim. Acta 46 861

    Article  CAS  Google Scholar 

  18. Zhang J, Baró M D, Pellicer E and Sort J 2014 Nanoscale 6 12490

    Article  CAS  Google Scholar 

  19. Creus J, Mazille H and Idrissi H 2000 Surf. Coat. Technol. 130 224

    Article  CAS  Google Scholar 

  20. Shin H-C, Dong J and Liu M 2003 Adv. Mater. 15 1610

    Article  CAS  Google Scholar 

  21. Niloofar T and Sanjabi S 2019 Surf. Rev. Lett. 27 1950122

    Google Scholar 

  22. Eugénio S, Silva T M, Carmezim M J, Duarte R G and Montemor M F 2014 J. Appl. Electrochem. 44 455

    Article  Google Scholar 

  23. Cristina G-B, Isaac H-C, Ortega E, García-Antón J and Pérez-Herranz V 2013 Int. J. Hydrog. Energy 38 10157

    Article  Google Scholar 

  24. Zhao X, Fuji M, Shirai T, Watanabe H, Takahashi M and Zuo Yu 2011 J. Mater. Sci. 46 4630

    Article  CAS  Google Scholar 

  25. Cardoso D S, Amaral L, Santos D F, Šljukić B, Sequeira C A, Macciò D and Saccone A 2015 Int. J. Hydrog. Energy 40 4295

    Article  CAS  Google Scholar 

  26. Yu L, Lei T, Nan B, Jiang Y, He Y and Liu C T 2016 Energy 97 498

    Article  CAS  Google Scholar 

  27. Zuwei Y and Chen F 2014 J. Power Sources 265 273

    Article  Google Scholar 

  28. Chen F, Tao Y, Ling H, Zhou C, Liu Z, Huang J et al 2020 Fuel 280 118612

    Article  CAS  Google Scholar 

  29. Gao M Y, Yang C, Zhang Q B, Yu Y W, Hua Y X, Li Y et al 2016 Electrochim. Acta 215 609

    Article  CAS  Google Scholar 

  30. Nastaran F and Sanjabi S 2019 J. Ind. Eng. Chem. 70 211

    Article  Google Scholar 

  31. Cardoso D S P, Eugénio S, Silva T M, Santos D M F, Sequeira C A C and Montemor M F 2015 RSC Adv. 5 43456

    Article  CAS  Google Scholar 

  32. Zhang W, Liu Y, Zhou H, Li J, Yao S and Wang H 2019 J. Mater. Sci. 54 11585

    Article  CAS  Google Scholar 

  33. Aldama I, Siwek K I, Amarilla J M, Rojo J M, Eugénio S and Silva T M 2019 J. Energy Storage 22 345

    Article  Google Scholar 

  34. Li D, Liu H and Feng L 2020 Energy Fuel 34 13491

    Article  CAS  Google Scholar 

  35. Eiler K, Suriñach S, Sort J and Pellicer E 2020 Appl. Catal. B 265 118597

    Article  CAS  Google Scholar 

  36. Zhou J, Luo Y, Zhou Q, Huang C, Zhang Y and Bo Y 2021 Appl. Catal. B 288 120002

    Article  CAS  Google Scholar 

  37. Xu H, Feng J-X, Tong Y-X and Li G-R 2017 ACS Catal. 7 986

    Article  CAS  Google Scholar 

  38. Katharina K, Kottakkat T, Jovanov Z P, Jiang S, Pasquini C, Scholten F et al 2018 ChemSusChem 11 3449

    Article  Google Scholar 

  39. Wu L, He Y, Lei T, Nan B, Nanping X, Zou J et al 2014 Energy 67 19

    Article  CAS  Google Scholar 

  40. Bockris J O ’M and Potter E C 1952 J. Electrochem. Soc. 99 169

    Article  CAS  Google Scholar 

  41. Koper Marc T M 2011 J. Electroanal. Chem. 660 254

    Article  Google Scholar 

  42. Jakši J M, Vojnović M V and Krstajić N V 2000 Electrochim. Acta 45 4151

    Article  Google Scholar 

  43. Gao D, Guo J, Cui X, Yang L, Yang Y, He H et al 2017 ACS Appl. Mater. Interfaces 9 22420

    Article  CAS  Google Scholar 

  44. Lasia A and Rami A 1990 J. Electroanal. Chem. Interfacial Electrochem. 294 123

    Article  CAS  Google Scholar 

  45. Gupta S, Patel M K, Miotello A and Patel N 2020 Adv. Funct. Mater. 30 1906481

    Article  CAS  Google Scholar 

  46. Tang C, Cheng N, Zonghua P, Xing W and Sun X 2015 Angew. Chem. Int. Ed. 54 9351

    Article  CAS  Google Scholar 

  47. Shi J, Jianming H, Luo Y, Sun X and Asiri A M 2015 Catal Sci. Technol. 5 4954

    Article  CAS  Google Scholar 

  48. Xiao Y, Li B, Qin L, Lin H, Li Q and Nie M 2020 Catal. Commun. 144 106075

    Article  CAS  Google Scholar 

  49. Rosalbino F, Scavino G and Actis Grande M 2013 J. Electroanal. Chem. 694 114

    Article  CAS  Google Scholar 

  50. Xu T, Wei S, Zhang X, Zhang D, Yanchao X and Cui X 2019 Matter. Res. Express 6 075501

    Article  CAS  Google Scholar 

  51. De Silva U, Masud J, Zhang N, Hon Y, Liyanage W P R, Zaeem M A et al 2018 J. Mater. Chem. A 6 7608

    Article  Google Scholar 

  52. Xiao X, Xiujuan W, Wang Y, Zhu K, Liu B, Cai X et al 2020 Catal. Commun. 138 105957

    Article  CAS  Google Scholar 

  53. Deng Z, Wang J, Nie Y and Wei Z 2017 J. Power Sources 352 26

    Article  CAS  Google Scholar 

  54. Xia M, Lei T, Lv N and Li N 2014 Int. J. Hydrog. Energy 39 4794

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Sanjabi.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12202 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mojabi, S., Sanjabi, S. Facile electrodeposition of feather-like Cu–Ni foam as an affordable electrocatalyst for hydrogen evolution reaction. Bull Mater Sci 46, 9 (2023). https://doi.org/10.1007/s12034-022-02838-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-022-02838-7

Keywords

Navigation