Skip to main content
Log in

Charge transport studies of highly stable diketopyrrolopyrrole-based molecular semiconductor

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In the last decade, the diketopyrrolopyrrole (DPP)-based molecular semiconductors received significant prominence for its ability to build ambient stable donor–acceptor type organic materials for numerous microelectronics applications, especially in organic thin-film transistors and photovoltaics. This research article demonstrates the charge transport properties of 3,6-bis(5-(4-(dimethylamino)phenyl)thiophen-2-yl)-2,5-dihexadecylpyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione[DPP(PhNMe2)2] in single layer device structure prepared by thermal evaporation technique in the frequency and temperature range of 102–106 Hz and 133–273 K, respectively. An initial impression of Nyquist plot suggests metal-like behaviour as the impedance increases with an increase in temperature. Semicircle in Nyquist plot suggests Debye-type relaxation. This result has been explained mathematically and fitted equivalent circuit (contact resistance + parallel combination of resistance and capacitance) of device. Resonance frequency have been estimated by the Nyquist plot and crosschecked by Joncher’s Power Law. The frequency exponent ‘s’ is estimated by Joncher’s Universal Power Law and it further shows that charge transport mechanism in the device is quantum mechanical tunnelling. These analyses indicate the existence of Poole–Frenkel effect and explains the charge carrier mobility dependence on the applied field in the studied temperature range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Palai A K, Kumar A, Sim K, Kwon J, Shin T, Jang S et al 2016 New J. Chem. 40 385

    Article  CAS  Google Scholar 

  2. Qu S and Tian H 2012 Chem. Commun. 25 3039

    Article  Google Scholar 

  3. Park J 2019 Crystals 7 2019

    Google Scholar 

  4. Kylberg W 2011 Energy Environ. Sci. 9 3617

    Article  Google Scholar 

  5. Sagar S, Mohanan K U, Cho S, Majewski L A and Das B C 2022 Sci. Rep. 12 3808

    Article  CAS  Google Scholar 

  6. Chandra K P, Prasad K and Gupta R N 2007 Physica B: Condens. Matter 388 118

    Article  CAS  Google Scholar 

  7. Ji L, Fan J, Qin G, Zhang N, Lin P and Ren A 2018 J. Phys. Chem. C 122 21226

    Article  CAS  Google Scholar 

  8. Yao Z, Wang J and Pei J 2018 Cryst. Growth Des. 18 7

    Article  CAS  Google Scholar 

  9. Madogni V I, Kounouhéwa B, Akpo A, Agbomahéna M, Hounkpatin S A and Awanou C N 2015Chem. Phys. Lett. 640 201.

  10. Palai A K, Chao H, Chao S, Shin T J, Jang S, Park S, et al 2013 Org. Electron. 14 1396

    Article  CAS  Google Scholar 

  11. Kwon J, Na H, Palai A K, Kumar A, Jeong U, Cho S et al 2015 Synth. Met. 209 240

    Article  CAS  Google Scholar 

  12. Kaur M and Choi D H 2015 Chem. Soc. Rev. 44 58

    Article  CAS  Google Scholar 

  13. Zhang Q, Kan B, Liu F, Long G, Wan X, Chen X et al 2014 Nat. Photonics 9 35

    Article  Google Scholar 

  14. Li S, Liu W, Shi M, Mai J, Lau T-K, Wan J et al 2016 Energy Environ. Sci. 9 604

    Article  CAS  Google Scholar 

  15. Das S, Choi J and Alford T L 2015 Sol. Energy Mater. Sol. Cells 133 255

    Article  CAS  Google Scholar 

  16. Montero José M and Bisquert Juan 2011 J. Appl. Phys. 110 043705

  17. Pickett A, Torkkeli M, Mukhopadhyay T, Puttaraju B, Laudari A, Lauritzen A E et al 2018 ACS Appl. Mater. Interfaces 10 19844

    Article  CAS  Google Scholar 

  18. Li Y, Sonar P, Murphy L and Hong W 2013 Energy Environ. Sci. 6 1684

    Article  CAS  Google Scholar 

  19. Sharma G D, Patil Y, Misra R and Keshtov M L 2017 J. Mater. Chem. A 5 3311

    Article  Google Scholar 

  20. Kumar A, Palai A K, Shin T J, Kwon J and Pyo S 2018 New J. Chem. 42 4052

    Article  CAS  Google Scholar 

  21. Kim S H, Zyoung T, Chu H Y, Do L M and Hwang D H 2000 Phys. Rev. B 61 15854

    Article  CAS  Google Scholar 

  22. Macdonald J R (ed) 1987 Impedance spectroscopy: emphasizing solid materials and systems (New York: Wiley)

    Google Scholar 

  23. Suman C K, Prasad K and Choudhary R N P 2006 J. Mater. Sci. 41 369

    Article  CAS  Google Scholar 

  24. Anand S, Goetz K P, Lamport Z A, Zeidell A M and Jurchescu O D 2019 Appl. Phys. Lett. 115 073301

    Article  Google Scholar 

  25. Li Xiao, Fengcheng Wu and Das Sarma S 2020 Phys. Rev. B 101 245436

    Article  CAS  Google Scholar 

  26. Min H, Hwang E H and Das Sarma S 2011 Phys. Rev. B 83 161404(R)

    Article  Google Scholar 

  27. Brédas J L, Calbert J P, da Silva Filho D A and Cornil, 2022 2022 Proc. Natl. Acad. Sci. USA 99 5804

    Article  Google Scholar 

  28. Schön J H, Kloc C and Batlogg B 2002 Phys. Rev. Lett. 86 3843

    Article  Google Scholar 

  29. Coropceanu V, Cornil J and Filho D A 2007 Chem. Rev. 107 926

    Article  CAS  Google Scholar 

  30. Jonscher A K 1983 Dielectric relaxation in solids (London: Chelsea Dielectrics Press Limited)

    Google Scholar 

  31. Kim S H, Choi K H, Lee H M, Hwang D H, Do L M, Chu H Y et al 2000 J. Appl. Phys. 87 882

    Article  CAS  Google Scholar 

  32. Gilroy K S and Phillips W A 1981 Philosophical Mag. B 43 735

    Article  CAS  Google Scholar 

  33. Almodovar N S, Portelles J, Raymond O, Heiras J and Siqueiros J M 2007 J. Appl. Phys. 102 124105

    Article  Google Scholar 

  34. Rana O, Srivastava R, Grover R, Chauhan G, Bawa S S, Zulfequar M et al 2011 Jpn. J. Appl. Phys. 50 061601

    Article  Google Scholar 

  35. El-Hakim S A, El-Wahab F A, Mohamed A S and Kotkata M F 2003 Phys. Stat. Sol. (a) 198 128

    Article  CAS  Google Scholar 

  36. Morrison F D, Sinclair D C and West A R 2001 J. Am. Ceram. Soc. 84 531

    Article  CAS  Google Scholar 

  37. Greenhoe B M, Hassan M K, Wiggins J S and Mauritz K A 2016 J. Polym. Sci. Part B: Polym. Phys. 54 1918

  38. Priyanka and Jha A K, 2013 Bull. Mater. Sci. 36 135

    Article  Google Scholar 

  39. Mauritz K A 1989 Macromolecules 22 4483

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhayal, S.S., Nain, A., Srivastava, R. et al. Charge transport studies of highly stable diketopyrrolopyrrole-based molecular semiconductor. Bull Mater Sci 45, 242 (2022). https://doi.org/10.1007/s12034-022-02827-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-022-02827-w

Keywords

Navigation