Skip to main content
Log in

Thin film deposition of organic hole transporting materials: optical, thermodynamic and morphological properties of naphthyl-substituted benzidines

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Aromatic diamines and naphthyl-substituted benzidines (BDB, TPB, TPD, NPB, α-NPD, β-NPB, TNB) are listed as one of the best series available of hole transport materials used as thin films in organic electronics (OLEDs, OPVs). High-quality, homogeneous and compact thin films (≈ 300 nm of thickness) of this compound series were prepared by a physical vapor deposition procedure. SEM and XRD characterizations evidence the amorphous nature of the thin films of NPB, α-NPD, β-NPB and TNB, prepared onto ITO and gold surfaces by a controlling mass flow rate. The semiconducting behavior of this class of π-conjugated materials was investigated through UV–vis characterization by the determination of optical band gaps (≈ 3 eV). According to DSC, SEM and XRD analyses, the materials evidenced an amorphous structure and high thermal stability in the glassy state. Analyzing the melting properties, the ratio Tg/Tm = 2/3 was observed for TPB and NPB, which have a higher molecular symmetry, while Tg/Tm = 3/4 was observed for the asymmetric β-NPB and TPD. The first accurate measurements of the vapor pressures and thermodynamic properties of phase transition were obtained for the most common hole transport material (NPB) in OLEDs. The relative stability of the crystalline phases of the diamine derivatives (BDB, TPB, NPB) was found to be enthalpically driven, increasing linearly with the molar volume of the compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Shirota Y (2000) organic materials for electronic and optoelectronic devices. J Mater Chem 10:1–25

    Article  Google Scholar 

  2. Adachi C, Nagai K, Tamoto N (1995) Molecular design of hole transport materials for obtaining high durability in organic electroluminescent diodes. Appl Phys Lett 66:2679–2681

    Article  Google Scholar 

  3. Xiao L, Chen Z, Qu B, Luo J, Kong S, Gong Q, Kido J (2011) Recent progresses on materials for electrophosphorescent organic light-emitting devices. Adv Mater 23:926–952

    Article  Google Scholar 

  4. O´Neill M, Kelly SM (2011) Ordered materials for organic electronics and photonics. Adv Mater 23:566–584

    Article  Google Scholar 

  5. Geffroy B, Roy P, Prat C (2006) Organic light-emitting diode (OLED) technology: materials, devices and display technologies. Polym Int 55:572–582

    Article  Google Scholar 

  6. Aonuma M, Oyamada T, Sasabe H (2007) Material design of hole transport materials capable of thick-film formation in organic light emitting diodes. Appl Phys Lett 90:183503

    Article  Google Scholar 

  7. Sano T, Nishio Y, Hamada Y, Takahashi H, Usuki T, Shibata K (2000) Design of conjugated molecular materials for optoelectronics. J Mater Chem 10:157–161

    Article  Google Scholar 

  8. Tao S, Zhou Y, Lee CS, Lee ST, Huang D, Zhang X (2008) Highly efficient nondoped blue organic light-emitting diodes based on anthracene-triphenylamine derivatives. J Phys Chem C 112:14603–14606

    Article  Google Scholar 

  9. Cias P, Slugovc C, Gescheidt G (2011) Hole transport in triphenylamine based oled devices: from theoretical modeling to properties prediction. J Phys Chem A 115:14519–14525

    Article  Google Scholar 

  10. Costa JCS, Santos LMNBF (2013) Hole transport materials based thin films: topographic structures and phase transition thermodynamics of triphenylamine derivatives. J Phys Chem C 117:10919–10928

    Article  Google Scholar 

  11. Naka S, Okada H, Onnagawa H, Yamaguchi Y, Tsutsui T (2000) Carrier transport properties of organic materials for EL device operation. Synth Met 111–112:331–333

    Article  Google Scholar 

  12. Shirota Y, Kageyama H (2007) Charge carrier transporting molecular materials and their applications in devices. Chem Rev 107:953–1010

    Article  Google Scholar 

  13. Calió L, Kazim S, Gratzel M, Ahmad S (2016) Hole-transport materials for perovskite solar cells. Angew Chem Int Ed 55:14522–14545

    Article  Google Scholar 

  14. Leijtens T, Ding I-K, Giovenzana T, Bloking JT, McCehee MD, Sellinger A (2012) Hole transport materials with low glass transition temperatures and high solubility for application in solid-state dye-sensitized solar cells. ACS Nano 6:1455–1462

    Article  Google Scholar 

  15. Bi D, Yang L, Boschloo G, Hagfeldt A, Johansson EMJ (2013) Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells. J Phys Chem Lett 4:1532–1536

    Article  Google Scholar 

  16. Van Slyke SA, Chen CH, Tang CW (1996) Organic electroluminescent devices with improved stability. Appl Phys Lett 69:2160–2162

    Article  Google Scholar 

  17. Tong QX, Lai SL, Chan MY, Lai KH, Tang JX, Kwong HL, Lee CS, Lee ST (2007) High Tg triphenylamine-based starburst hole-transporting material for organic light-emitting devices. Chem Mater 19:5851–5855

    Article  Google Scholar 

  18. Costa JCS, Lima CFRAC, Santos LMNBF (2014) Electron transport materials for OLEDs: understanding the crystal and molecular stability of the tris(8-hydroxyquinolines) of Al, Ga, and In. J Phys Chem C 118:21762–21769

    Article  Google Scholar 

  19. Mattox DM (2014) Handbook of physical vapor deposition (PVD) processing. Elsevier Science, Amsterdam

    Google Scholar 

  20. Costa JCS, Rocha RM, Vaz ICM, Torres MC, Mendes A, Santos LMNBF (2015) Description and test of a new multilayer thin film vapor deposition apparatus for organic semiconductor materials. J Chem Eng Data 60:3776–3791

    Article  Google Scholar 

  21. Halls MD, Tripp CP, Schlegel HB (2001) Structure and infrared (ir) assignments for the OLED material: N, N′-diphenyl-N, N′-bis(1-naphthyl)-1,1′-biphenyl-4,4″-diamine (NPB). Phys Chem Chem Phys 3:2131–2136

    Article  Google Scholar 

  22. Li B, Chen J, Zhao Y, Yang D, Ma D (2011) Effects of carrier trapping and scattering on hole transport properties of N, N′-diphenyl-N, N′-bis(1-naphthyl)-1,1′-biphenyl-4,4′-diamine thin films. Org Electron 12:974–979

    Article  Google Scholar 

  23. Shim S, Kim JT, Shin EJ, Chung NK, Ko MK, Kwon O, Yun JY (2016) Phase behaviors of NPB molecule under vacuum. Mater Res Bull 82:67–70

    Article  Google Scholar 

  24. Takebayashi Y, Morii N, Sue K, Furuya T, Yoda S, Ikemizu D, Taka H (2015) Solubility of N, N′-Di(1-naphthyl)-N, N′-diphenyl Benzidine (NPB) in various organic solvents: measurement and correlation with the hansen solubility parameter. Ind Eng Chem Res 54:8801–8808

    Article  Google Scholar 

  25. Chao YC, Chuang CH, Hsu HL, Wang HJ, Hsu YC, Chen CP, Jeng RJ (2016) Enhanced thermal stability of organic photovoltaics via incorporating triphenylamine derivatives as additives. Sol Energy Mater Sol Cell 157:666–675

    Article  Google Scholar 

  26. Tagare J, Ulla H, Satyanarayan MN, Vaidyanathan S (2018) Synthesis, photophysical and electroluminescence studies of new triphenylamine-phenanthroimidazole based materials for organic light emitting diodes. J Lumin 194:600–609

    Article  Google Scholar 

  27. Santos LMNBF, Lima LMSS, Lima CFRAC, Magalhaes FD, Torres MC, Schroder B, Ribeiro da Silva MAV (2011) New Knudsen effusion apparatus with simultaneous gravimetric and quartz crystal microbalance mass loss detection. J Chem Thermodyn 43:834–843

    Article  Google Scholar 

  28. Costa JCS, Taveira RJS, Lima CFRAC, Mendes A, Santos LMNBF (2016) Optical band gaps of organic semiconductor materials. Opt Mater 58:51–60

    Article  Google Scholar 

  29. Roux MV, Temprado M, Chickos JS, Nagano Y (2008) Critically evaluated thermochemical properties of polycyclic aromatic hydrocarbons. J Phys Chem Ref Data 37:1855–1996

    Article  Google Scholar 

  30. Sabbah R, Xu-wu A, Chickos JS, Planas Leitao ML, Roux MV, Torres LA (1999) Reference materials for calorimetry and differential thermal analysis. Thermochim Acta 331:93–204

    Article  Google Scholar 

  31. Martins JS, Bartolomeu AA, Santos WH, Filho LCS, Oliveira EF, Lavarda FC, Cuin A, Legnani C, Maciel IO, Fragneaud B, Quirino WG (2017) New class of organic hole-transporting materials based on xanthene derivatives for organic electronic applications. J Phys Chem C 121:12999–13007

    Article  Google Scholar 

  32. Rajagopal A, Wu CI, Kahn A (1998) Energy level offset at organic semiconductor heterojunctions. J Appl Phys 83:2649–2655

    Article  Google Scholar 

  33. Hill IG, Kahn A (1999) Organic semiconductor heterointerfaces containing bathocuproine. J Appl Phys 86:4515–4519

    Article  Google Scholar 

  34. New E, Howells T, Sullivan P, Jones TS (2013) Small molecule tandem organic photovoltaic cells incorporating an alpha-NPD optical spacer layer. Organ Electron 14:2353–2359

    Article  Google Scholar 

  35. O´Brien DF, Burrows PE, Forrest SR, Koene BE, Loy DE, Thompson ME (1998) Hole transporting materials with high glass transition temperatures for use in organic light-emitting devices. Adv Mater 10:1108–1112

    Article  Google Scholar 

  36. Lee YJ, Lee H, Byun Y, Song S, Kim JE, Eom D, Cha W, Park SS, Kim J, Kim H (2007) Study of thermal degradation of organic light emitting device structures by X-ray scattering. Thin Solid Films 515:5674–5677

    Article  Google Scholar 

  37. Lima CFRAC, Costa JCS, Melo A, Tavares HR, Silva AMS, Santos LMNBF (2015) Effect of self-association on the phase stability of triphenylamine derivatives. J Phys Chem A 119:6676–6682

    Article  Google Scholar 

  38. Zhang HG, Yu WT, Wang L, Yang JX, Liu Z, Tao XT, Jiang MH (2005) Crystal structure of N, N, N′, N′-Tetraphenyl-1,4-benzenediamine, C30H24N2. Z Kristallogr NCS 220:101–102

    Google Scholar 

  39. Zhang HG, Yu WT, Ya SN, Cheng C, Tao XT (2006) N, N, N′, N′-Tetra-phenyl-1,1′-biphenyl-4,4′-diamine. Acta Crystallogr E62:o5236–o5238

    Google Scholar 

  40. Song Y, Di C, Yang X, Li S, Xu W, Liu Y, Yang L, Shuai Z, Zhang D, Zhu DA (2006) Cyclic triphenylamine dimer for organic field-effect transistors with high performance. J Am Chem Soc 128:15940–15941

    Article  Google Scholar 

  41. Shao X, Asahi K, Yamauchi T, Sugimoto T, Shiro MA (2009) New crystal phase of N, N, N′, N′-Tetraphenyl-1,1′-biphenyl-4,4′-diamine. Acta Crystallogr E 65:o1224

    Article  Google Scholar 

  42. Zhang Z, Burkholder E, Zubieta J (2004) Non-merohedrally twinned crystals of N, N′-Bis(3-methylphenyl)-N, N′-diphenyl-1,1′-biphenyl-4,4′-diamine: an excellent triphenylamine-based hole transporter. Acta Crystallogr C 60:o452–o454

    Article  Google Scholar 

  43. Yoshizawa K, Chano A, Ito A, Tanaka K, Yamabe T, Fujita H, Yamauchi J, Shiro M (1992) ESR of the cationic triradical of 1,3,5-tris(diphenylamino)benzene. J Am Chem Soc 114:5994–5998

    Article  Google Scholar 

  44. Cheng JA, Cheng PJ (2010) Crystal study of N, N′-diphenyl-N, N′-bis(1-naphthyl)-1,1′-biphenyl-4,4′-diamine. J Chem Crystallogr 40:557–560

    Article  Google Scholar 

  45. Lima CFRAC, Rocha MAA, Melo A, Gomes LR, Low JN, Santos LMNBF (2011) Structural and thermodynamic characterization of polyphenylbenzenes. J Phys Chem A 115:11876–11888

    Article  Google Scholar 

  46. Ribeiro da Silva MAV, Santos LMNBF, Lima LMSS (2008) Standard molar enthalpies of formation and of sublimation of the terphenyl isomers. J Chem Thermodyn 43:375–385

    Article  Google Scholar 

  47. Lima LMSS (2009) Estudo Energético de Alguns Hidrocarbonetos Aromáticos Policíclicos e Polifenilos. Ph.D. Dissertation, University of Porto, Portugal

  48. Venables JA, Spiller GDT, Hanbucken M (1984) Nucleation and growth of thin films. Rep Prog Phys 47:399–459

    Article  Google Scholar 

  49. Zhang Z, Lagally MG (1997) Atomistic processes in the early stages of thin-film growth. Science 276:377–383

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Fundacão para a Ciência e Tecnologia (FCT), Lisbon, Portugal, and the European Social Fund (ESF) for financial support to CIQUP, University of Porto (Projects Pest-C/QUI/UI0081/2013 and NORTE-01-0145-FEDER-000028, Sustainable Advanced Materials), and for financial support to LEPABE, University of Porto (Projects POCI-01-0145-FEDER-006939 and NORTE-01-0145-FEDER-000005—LEPABE-2-ECO-INNOVATION). Dr. José Costa also thanks FCT for the award of the Research Grant SFRH/BPD/116930/2016.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to José C. S. Costa or Luís M. N. B. F. Santos.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 382 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, J.C.S., Mendes, A. & Santos, L.M.N.B.F. Thin film deposition of organic hole transporting materials: optical, thermodynamic and morphological properties of naphthyl-substituted benzidines. J Mater Sci 53, 12974–12987 (2018). https://doi.org/10.1007/s10853-018-2547-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2547-2

Keywords

Navigation