Skip to main content
Log in

Charge transport studies of tris[4-(diethylamino)phenyl]amine and OFET application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study demonstrates the charge transport properties of Tris[4-(diethylamino) phenyl]amine (TDAPA) in the frequency and temperature range of 0.1 Hz–1 MHz and 253–333 K, respectively using impedance spectroscopy. X-ray diffraction patterns of TDAPA powder and thin film indicate the polycrystalline nature of the studied material. The depressed semicircle in Nyquist’s plot indicates a non-Debye-type relaxation mechanism. The Almond-West power law and the Jump relaxation model were applied to investigate the charge transport and hopping mechanism. The exponent value was calculated and found well within range and the dc conductivity was determined using the same. Activation energy corresponding to dc conductivity and hopping was calculated and found to be 0.37 eV and 0.31 eV, respectively. The temperature-dependent behaviour of the exponent (s) is investigated in detail. The charge carrier mobility of TDAPA was also calculated by fabricating an organic field effect transistor in bottom gate top contact geometry on Si/SiO2 substrate. OFET characteristics of the material indicate the p-type behaviour with charge carrier mobility of 5.14 × 10−4cm2/Vs, 2.36 Vs, the threshold voltage of 33.61 V, and 2.19 × 103 On/Off.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. A. Tavasli, B. Gurunlu, D. Gunturkun, R. Isci, S.Faraji, Electronics. 11, 316 (2022)

    Article  CAS  Google Scholar 

  2. Y. Qian, X. Zhang, L. Xie, D. Qi, K. Bevita, X. Chandran, W. Chen, Huang, Adv. Mater. 28, 9243–9265 (2016)

    Article  CAS  Google Scholar 

  3. J.R. Sheats, J. Mater. Res. 19, 1974–1989 (2004)

    Article  CAS  Google Scholar 

  4. J.C. Scott, G.G. Malliaras, Chem. Phys. Lett. 299, 115–119 (1999)

    Article  CAS  Google Scholar 

  5. R. Rybakiewicz, M. Zagorska, A. Pron, Chem. Pap. 71, 243–268 (2017)

    Article  CAS  Google Scholar 

  6. P. Drzaic, D. Hecht, M. O’Connell, G. Irvin, US Patent. 2009/0169819, A1 (2009)

  7. D. Kundu, R. Black, B. Adams, L.F. Nazar, ACS Cent. Sci. (2015). https://doi.org/10.1021/acscentsci.5b00267

    Article  Google Scholar 

  8. Y. Zou, J. Wang, L. Wang, Y. Li, X. Zhang, Chem. Soc. Rev. 45(10), 2751–2767 (2016)

    Google Scholar 

  9. E. Tanış, E.B. Sas, B. Gündüz ·, M. Kurt, J. Mater. Sci.: Mater. Electron. 29, 16111–16119 (2018). https://doi.org/10.1007/s10854-018-9700-1

    Article  CAS  Google Scholar 

  10. J.R. Macdonald, Impedance Spectroscopy (Wiley, New York, 1987). https://doi.org/10.1007/BF02368532

    Book  Google Scholar 

  11. “Z-View” software package developed by scribner associates Inc, from https://scribner.com/products/zview-software/

  12. A. Omri, M. Bejar, E. Dhahri, M. Es-Souni, M.A. Valente, M.P.F. Graça, L.C. Costa, J. Alloys Compd. 536, 173–178 (2012). https://doi.org/10.1016/j.jallcom.2012.04.094

    Article  CAS  Google Scholar 

  13. R.J.D. Tilley, Perovskite: Structure-Property Relationships (Wiley, New York, 2016)

    Book  Google Scholar 

  14. S.K. Rout, A. Hussain, J.S. Lee, I.W. Kim, S.I. Woo, J. Alloys Compd. 477, 706–711 (2009). https://doi.org/10.1016/j.jallcom.2008.10.125

    Article  CAS  Google Scholar 

  15. M.M. Costa, G.F.M. Pires Junior, A.S.B. Sombra, Mater. Chem. Phys. 123, 35–39 (2010). https://doi.org/10.1016/j.matchemphys.2010.03.026

    Article  CAS  Google Scholar 

  16. K. Lily, K. Kumari, R.N.P. Prasad, Choudhary, J. Alloys Compd. 453, 325–331 (2008). https://doi.org/10.1016/j.jallcom.2006.11.081

    Article  CAS  Google Scholar 

  17. S.S. Dhayal, A. Nain, R. Srivastava, A.K. Palai, R. Poonia, A. Kumar, Bull. Mater. Sci. 45, 242 (2022). https://doi.org/10.1007/s12034-022-02827-w

    Article  CAS  Google Scholar 

  18. V.L. Mathe, R.B. Kamble, Mater. Res. Bull. 43, 2160–2165 (2008). https://doi.org/10.1016/j.materresbull.2007.09.001

    Article  CAS  Google Scholar 

  19. S. Nowy, W. Ren, A. Elschner, W. L€ovenich, W. Br€utting, J. Appl. Phys. (2010). https://doi.org/10.1063/1.3294642

    Article  Google Scholar 

  20. B.E. Conway, W.G. Pell, J. Solid State Electrochem. 7, 637–644 (2003). https://doi.org/10.1007/s10008-003-0395-7

    Article  CAS  Google Scholar 

  21. R.H. Nilson, M.T. Brumbach, B.C. Bunker, J. Electrochem. Soc. 158, A678–A688 (2011). https://doi.org/10.1149/1.3561427

    Article  CAS  Google Scholar 

  22. F.S. Howell, R.A. Bose, P.B. Macedo, C.T. Moynihan, J. Phys. Chem. 78, 639–648 (1974). https://doi.org/10.1021/j100599a016

    Article  CAS  Google Scholar 

  23. M. Coskun, O. Polat, F.M. Coşkun, Z. Durmu, M. Caglar, A. Turut, RSC Adv. 8, 4634–4648 (2018). https://doi.org/10.1039/C7RA13261A

    Article  CAS  Google Scholar 

  24. R. Adrian, L. Dariusz, K. Marek, M. Jaroslaw, W. Patryk, Materials. 11, 735 (2018). https://doi.org/10.3390/ma11050735

    Article  CAS  Google Scholar 

  25. R. Kumari, N. Ahlawat, A. Agarwal, S. Sanghi, M. Sindhu, J. Alloys Compd. 695, 3282–3289 (2017). https://doi.org/10.1016/j.jallcom.2016.11.200

    Article  CAS  Google Scholar 

  26. V. Butler, C.R.A. Catlow, B.E.F. Fender, J.H. Harding, Solid State Ionics. 8, 109–113 (1983). https://doi.org/10.1016/0167-2738(83)90070-X

    Article  CAS  Google Scholar 

  27. J.M. Reau, X.Y. Jun, J. Senegas, C. Le Deit, M. Poulain, Solid State Ion. 95, 191–199 (1997). https://doi.org/10.1016/S0167-2738(96)00564-4

    Article  CAS  Google Scholar 

  28. T. Lakshmana Rao, M.K. Pradhan, M. Chandrasekhar, P.V. Ramakrishna, S. Dash, J. Phys. 31, 345803 (2019). https://doi.org/10.1088/1361-648X/ab20a3

    Article  CAS  Google Scholar 

  29. S. Dahiya, R. Punia, S. Murugavel, A.S. Maan, Indian J. Phys. 88(11), 1169–1173 (2014)

    Article  CAS  Google Scholar 

  30. A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectrics Press, London, 1983)

    Google Scholar 

  31. R. Dridi, I. Saafi, A. Mhamdi, A. Matri, A. Yumak, M.H. Lakhdar, A. Amlouk, K. Boubaker, M. Amlouk, J. Alloys Compd. 634, 179 (2015)

    Article  CAS  Google Scholar 

  32. A. Ghosh, Phys. Rev. B 42, 2 (1990)

    Google Scholar 

  33. S.R. Elliott, Adv. Phys. 36, 135 (1987)

    Article  CAS  Google Scholar 

  34. G.E. Pike, Phys. Rev. B 6, 1572 (1972)

    Article  CAS  Google Scholar 

  35. B.M. Greenhoe, M.K. Hassan, J.S. Wiggins, K.A. Mauritz, J. Polym. Sci. B Polym. Phys. 54, 1918–1923 (2016). https://doi.org/10.1002/polb.24121

    Article  CAS  Google Scholar 

  36. G. Rizzoni, Principles, and Applications of Electrical Engineering (McGraw–Hill, New York, 2003)

    Google Scholar 

  37. W. Yang, R.J. Hamers, Appl. Phys. Lett. 85, 3626–3629 (2004). https://doi.org/10.1063/1.1808885

    Article  CAS  Google Scholar 

  38. J.H. Park, K.M. Kim, D.K. Hwang, Y.K. Choi, Appl. Phys. Lett. 83(16), 3404–3406 (2003)

    Article  Google Scholar 

  39. Y. Okada, T. Nishimura, K. Miwa, T. Hasegawa, Appl. Phys. Lett. 84(20), 4027–4029 (2004)

    Google Scholar 

  40. S.C.B. Mannsfeld, B.C.K. Tee, R.M. Stoltenberg, C.V.H. Chen, Z. Bao, Nat. Mater. 9(10), 859–864 (2010)

    Article  CAS  Google Scholar 

  41. X. Yu, Y. Liu, Y. Fu, C. Zhang, H. Huang, Appl. Phys. Lett., 88, no. 6, pp. 063508-1-063508-3 (2006)

  42. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Nature 432(7016), 488–492 (2004)

    Article  CAS  Google Scholar 

  43. R.J. Martín-Palma, Anal. Chimica Acta 854, 10–23 (2015)

    Google Scholar 

  44. G.G. Malliaras, J.C. Scott, J. Appl. Phys. 89(2), 1232–1243 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors, Amit Kumar, acknowledges the financial support provided by the Science and Engineering Research Board (SIRE), Department of Science and Technology, New Delhi and University Grant Commission, New Delhi in form of the projects SIR/2022/000703 and 30-545/2021(BSR), respectively.

Funding

This work was supported by  Department of Science and Technology, New Delhi (Grant No. SIR/2022/000703) and  University Grant Commission, New Delhi (IN) (Grant No. 30-545/2021(BSR)).

Author information

Authors and Affiliations

Authors

Contributions

SSD: conceptualization, methodology, formal analysis, investigation, writing original draft, data curation, AN: supervision and guidance, AS: formal analysis, reviewing and editing, RP: reviewing and editing, supervision, resources, validation, AK: funding acquisition, reviewing and editing, supervision, resources, validation.

Corresponding author

Correspondence to Amit Kumar.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhayal, S.S., Nain, A., Punia, R. et al. Charge transport studies of tris[4-(diethylamino)phenyl]amine and OFET application. J Mater Sci: Mater Electron 34, 1556 (2023). https://doi.org/10.1007/s10854-023-10926-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10926-5

Navigation