Skip to main content

Advertisement

Log in

Organic–inorganic hybrid nanocomposites for the photoreduction of CO2: environment and energy technologies

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Apart from the industrial production of carbon dioxide (CO2), large amounts of CO2 emissions are associated with increased fossil fuel consumption. Photoreduction of CO2 into hydrocarbon fuels such as methane and methanol is a promising method to convert CO2 as fuel feedstock using the advantage of solar energy. There are several methods and nanomaterials used for the photoreduction of CO2. Efficient nanostructured catalysts are used for CO2 photoreduction. This review discusses the CO2 photoreduction possible strategies to enhance photoreduction efficiency and the photocatalytic systems (homogenous and heterogeneous catalysts) for CO2 reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Reproduced with permission from Fu et al [24].

References

  1. Yui T, Tamaki Y, Sekizawa K and Ishitani O 2011 Abstract Top Curr. Chem. 303 151

    Article  CAS  Google Scholar 

  2. Olah G A, Mathew T, Goeppert A and Prakash G K 2018 Top. Catal. 61 522

    Article  CAS  Google Scholar 

  3. MacDowell N 2010 Energy Environ. Sci. 3 1645

    Article  CAS  Google Scholar 

  4. Hawecker J, Lehn J-M and Ziessel R 1986 Helv. Chim. Acta 69 1990

    Article  CAS  Google Scholar 

  5. Bonchio M, Carraro M, Gardan M, Scorrano G, Drioli E and Fontananova E 2006 Top. Catal. 40 133

    Article  CAS  Google Scholar 

  6. Inoue T, Fujishima A, Konishi S and Honda K 1979 Nature 277 637

    Article  CAS  Google Scholar 

  7. Abdul R 2019 Micromachines 10 326

    Article  Google Scholar 

  8. Pan H and Michael D 2020 Nanomaterials 10 2422

    Article  CAS  Google Scholar 

  9. Lingampalli S R, Ayyub M and Rao C 2017 ACS Omega 2 2740

    Article  CAS  Google Scholar 

  10. Wang C, Thompson R L, Baltrus J and Matranga C 2010 J. Phys. Chem. Lett. 1 48

    Article  CAS  Google Scholar 

  11. Li M, Zhang L, Fan X, Zhou Y, Wu Y and Shi J 2015 J. Mater. Chem. A 3 5189

    Article  CAS  Google Scholar 

  12. Yu J, Jin J, Cheng B and Mietek J 2014 J. Mater. Chem. A 2 3407

    Article  CAS  Google Scholar 

  13. Xu Y, Yang M, Chen B, Wang X, Chen H, Kuang D et al 2017 J. Am. Chem. Soc. 139 5660

    Article  CAS  Google Scholar 

  14. Choi K M, Kim D, Rung B, Trickett C A, Barmanbek J, Alshammari A S et al 2017 J. Am. Chem. Soc. 139 356

    Article  CAS  Google Scholar 

  15. Sprick R, Jiang J, Bonillo B, Ren S, Ratvijitvech T, Guiglion et al 2015 J. Am. Chem. Soc. 137 3265

  16. Zhong F 2011 Chem. Eur. J. 17 10871

    Article  Google Scholar 

  17. Pierre K 2008 Angew. Chem. Int. Ed. 47 3450

    Article  Google Scholar 

  18. Zhen W 2021 ACS Appl. Polym. Mater. 3 171

    Article  Google Scholar 

  19. Hui M and Zhen W 2020 Sci. China Mater. 63 429

    Article  Google Scholar 

  20. Baoshun L 2019 J. Phys. Chem. C 123 30958

    Article  Google Scholar 

  21. Xue Y, Wu Z, He X, Yang X, Chen X and Gao Z 2019 Nanomaterials 9 222

    Article  CAS  Google Scholar 

  22. Chang X X, Wang T and Gong J L 2016 Energy Environ. Sci. 9 2177

    Article  CAS  Google Scholar 

  23. Vasileff A, Xu C C, Jiao Y, Zheng Y and Qiao S Z 2018 Chem. 4 1809

    Article  CAS  Google Scholar 

  24. Fu J, Jiang K, Qiu X, Yu J and Liu M 2019 Mater. Today 32 222

    Article  Google Scholar 

  25. Habisreutinger S N, Schmidt-Mende L and Stolarczyk J K 2013 Angew. Chem. Int. Ed. 52 7372

    Article  CAS  Google Scholar 

  26. Zheng Y, Vasileff A, Zhou X L, Jiao Y, Jaroniec M and Qiao S Z 2019 J. Am. Chem. Soc. 141 7646

    Article  CAS  Google Scholar 

  27. Xiang X, Pan F and Li Y 2018 Adv. Compos. Hybrid Mater. 1 6

    Article  CAS  Google Scholar 

  28. Liu C, Yu Z, Neff D, Zhamu A and Jang B Z 2010 Nano Lett. 10 4863

    Article  CAS  Google Scholar 

  29. Zhu S, Liang S, Tong Y, An X, Long J, Fu X et al 2015 Phys. Chem. Chem. Phys. 17 9761

    Article  CAS  Google Scholar 

  30. Wang Y, Zhao J, Wang T, Li Y, Li X, Yin J et al 2016 J. Catal. 337 293

    Article  CAS  Google Scholar 

  31. Zhu S, Liang S, Bi J, Liu M, Zhou L, Wu L et al 2016 Green Chem. 18 1355

    Article  CAS  Google Scholar 

  32. Xie S, Wang Y, Zhang Q, Deng W and Wang Y 2014 ACS Catal. 4 3644

    Article  CAS  Google Scholar 

  33. Zhang L, Li N, Jiu H, Qi G and Huang Y 2015 Ceram. Int. 41 6256

    Article  CAS  Google Scholar 

  34. Wang H, Raziq F, Qu Y, Qin C, Wang J and Jing L 2015 RSC Adv. 5 85061

    Article  CAS  Google Scholar 

  35. Pan Y-X, You Y, Xin S, Li Y, Fu G, Cui Z et al 2017 J. Am. Chem. Soc. 139 4123

    Article  CAS  Google Scholar 

  36. Liu Q, Low Z-X, Li L, Razmjou A and Wang K 2013 J. Mater. Chem. A 1 11563

    Article  CAS  Google Scholar 

  37. Tsuneoka H, Teramura K, Shishido T and Tanaka T 2010 J. Phys. Chem. C 114 8892

    Article  CAS  Google Scholar 

  38. Liang L, Lei F, Gao S, Sun Y, Jiao X, Wu J et al 2015 Angew. Chem. Int. Ed. 5413971

  39. Li X, Chen J, Li H, Li J, Xu Y, Liu Y et al 2011 J. Nat. Gas Chem. 20 413

    Article  CAS  Google Scholar 

  40. Kong X Y, Lee W, Ong W J, Chai S P and Mohamed A R 2016 ChemCatChem 8 3074

    Article  CAS  Google Scholar 

  41. Teramura K, Iguchi S, Mizuno Y, Shishido T and Tanaka T 2012 Angew. Chem. 124 8132

    Article  Google Scholar 

  42. Zhao H, Xu J, Liu L, Rao G, Zhao C and Li Y 2016 J. CO2 Util. 15 15

  43. Zhao C, Liu L, Rao G, Zhao H, Wang L and Xu J 2015 Cat. Sci. Technol. 5 3288

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the support by the King Fahd University of Petroleum and Minerals (KFUPM), Saudi Arabia, through Project No. DF181001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tawfik A Saleh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleh, T.A. Organic–inorganic hybrid nanocomposites for the photoreduction of CO2: environment and energy technologies. Bull Mater Sci 45, 222 (2022). https://doi.org/10.1007/s12034-022-02807-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-022-02807-0

Keywords

Navigation