Skip to main content

Advertisement

Log in

Hydrothermally synthesized polycrystalline Ce-TiO2@rGO compound for sensing of para-nitroaniline

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Polycrystalline Ce-TiO2@rGO compound has been successfully synthesized by hydrothermal method. The synthesized compound was characterized by powder X-ray diffraction (XRD), Fourier transform-infrared spectrophotometer, field-emission scanning electron microscopy, transmission electron microscopy and thermogravimetric analysis to confirm its crystallinity, morphology and thermal stability. From XRD results, crystallite size of the Ce-TiO2@rGO compound was found between 9–15.2 nm, and SEM images confirm the needle-like structure of Ce-TiO2 particles distributed over the reduced graphene oxide (rGO) layer. Further, the electrochemical behaviour of the Ce-TiO2@rGO compound was examined by cyclic voltammetry and differential pulse voltammetry (DPV) techniques for the electrochemical detection of para-nitroaniline. The surface of the glassy carbon electrode was modified by the drop-casting technique. The scan rate effect showed that the electrode process is diffusion controlled. The modified glassy carbon electrode (MGCE) exhibited the 0.347 μM limit of detection, satisfactory sensitivity of 49.12 µA µM−1 m−2 and linear range between 0.1 and 1.5 µM. DPV interference studies results confirmed the selectivity of MGCE. The developed MGCE electrochemical sensor thus implemented is also advantageous for its good selectivity, stability, cost-effectiveness, portability and reproducibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Scheme 1
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Lbrahim A A, Umar A, Kumar R, Kim S H, Bumajdad A and Baskoutas S 2016 Ceram. Int. 42 16505

    Article  Google Scholar 

  2. Bilal M, Bagheri A R, Bhatt P and Chen S 2021 J. Environ. Manage. 291 112685

    Article  CAS  Google Scholar 

  3. Hazardous Substance fact sheet 2004, New Jersey Department of Health and Senior Services Occupational Health Service, p 1

  4. Ahmad N, Umar A, Kumar R and Alam M 2016 Ceram. Int. 42 11562

    Article  CAS  Google Scholar 

  5. Sadeghzadeh S M, Zhiani R and Emrani S 2018 New J. Chem. 42 988

    Article  CAS  Google Scholar 

  6. Guo Y X, Feng X, Han T Y, Wang S, Lin Z G, Dong Y P et al 2014 J. Am. Soc. 136 15485

    Article  CAS  Google Scholar 

  7. Li L N, Zhang S Q, Xu L J, Han L, Chen Z N and Luo J H 2013 Inorg. Chem. 52 2013

    Google Scholar 

  8. Yu Z, Wang F, Lin X, Wang C, Fu Y, Wang X et al 2015 J. Solid State Chem. 232 96

    Article  CAS  Google Scholar 

  9. Padilla-Sa’nchez J A, Plaza-Bolaños P, Romero-Gonza’lez R, Garrido-Frenich A and Vidal J L M 2010 J. Chromatogr. A 1217 5724

    Article  Google Scholar 

  10. Wang S P and Chen H J 2002 J. Chromatogr. A 979 439

    Article  CAS  Google Scholar 

  11. Guo X, Wang Z and Zhou S 2004 Talanta. 64 135

    Article  CAS  Google Scholar 

  12. Sampreeth T, Al-Maghrabi M A, Bahuleyan B K and Ramesan M T 2018 Mater. Sci. 53 591

    Article  CAS  Google Scholar 

  13. Ramila Devi N, Sasidharan M and Sundramoorthy A K 2018 J. Electrochem. Soc. 165 B3046

    Article  Google Scholar 

  14. Zhang H, Cheng Lu, Shang H, Zhang W and Zhang A 2021 Russ. J. Electrochem. 57 872

    Article  Google Scholar 

  15. Marcano D C, Kosynkin D V, Berlin J M, Sinitskii A, Sun Z, Slesarev A et al 2010 ACS Nano 4 4806

    Article  CAS  Google Scholar 

  16. Moon I K, Lee J, Ruoff R S and Lee H 2010 Nat. Commun. 1 73

    Article  Google Scholar 

  17. Dhanalakshmi J, Iyyapushpam S, Nishanthi S T, Malligavathy M and Padiyan D P 2017 Adv. Nat. Sci. Nanosci. Nanotechnol. 8 015015

    Article  Google Scholar 

  18. Chelliah M, Rayappan J B B and Krishnan U M 2012 J. Appl. Sci. 12 1734

    Article  CAS  Google Scholar 

  19. Saleem H, Haneef M and Abbasi H Y 2018 Mater. Chem. Phys. 204 1

    Article  CAS  Google Scholar 

  20. Kumar N, Dipak P, Tiwari D C and Tomar R 2020 Chem. Phys. Lett. 755 137766

    Article  CAS  Google Scholar 

  21. Jerome R and Sundramoorthy Ashok K 2020 Anal. Chim. Acta 1132 110

    Article  CAS  Google Scholar 

  22. Kayani Z N, Maria S R and Naseem S 2020 Ceramics Inter. 46 381

    Article  CAS  Google Scholar 

  23. Nagarajan R D, Sundaramurthy Anandha K and Sundramoorthy Ashok K 2022 Chemosphere. 286 131478

    Article  CAS  Google Scholar 

  24. Oseghe E O, Ndungu P G and Jonnalagadda S B 2015 J. Photochem. Photobiol. 312 96

    Article  CAS  Google Scholar 

  25. Rahman O and Ahmad S 2016 RSC Adv. 6 10584

    Article  CAS  Google Scholar 

  26. Fu Y-X, Dai Y, Pei X-Y, Lyu S-S, Heng Y and Mo D-C 2019 Appl. Surf. Sci. 497 143553

    Article  CAS  Google Scholar 

  27. Ko Y, Choi W, Kim Y, Lee C, Jun Y and Kim J 2019 J. Electrochem. Sci. Technol. 10 313

    CAS  Google Scholar 

  28. Ashwini R, Dileep Kumar V G, Balaji K R, Viswanatha R, Ravikumar C R, Srivastava C et al 2021 Sens. Inter. 2 100125

    Article  Google Scholar 

  29. Palpandi K and Raman N 2020 New J. Chem. 44 8454

    Article  CAS  Google Scholar 

  30. Khan A L and Jain R 2020 J. Appl. Electrochem. 50 655

    Article  CAS  Google Scholar 

  31. Ahmad K, Mohammad A, Mathur P and Mobin Shaikh M 2016 Electrochim. Acta 215 435

    Article  CAS  Google Scholar 

  32. Kumar P R and Ramaraj R 2014 J. Electroanal. Chem. 731 72

    Article  Google Scholar 

  33. Ahmad R, Tripathy N, Ahn M-S and Hahn Y-B 2017 J. Colloid Interface Sci. 494 300

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are highly thankful to the School of Studies in Chemistry, Jiwaji University, Gwalior (M.P) for providing all the essential services. We also acknowledge Dr. A.P.J Abdul Kalam Central Instrumentation Facility (CIF), Jiwaji University, for characterization and funding support by Jiwaji University grant no. F/DEV/2019/588. We are also thankful to CSIR-IIITM, Jammu, for FE-SEM facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeraj Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Sharma, A., Tiwari, D.C. et al. Hydrothermally synthesized polycrystalline Ce-TiO2@rGO compound for sensing of para-nitroaniline. Bull Mater Sci 45, 87 (2022). https://doi.org/10.1007/s12034-022-02673-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-022-02673-w

Keywords

Navigation