Skip to main content
Log in

Formation of titanium dioxide/poly(vinylpyrrolidone) nanostructure composite by changing the flow rate of polymer solution during electrospinning

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The synthesis of nanoparticles and nanofibres was carried out by preparing a homogeneous solution of poly(vinylpyrrolidone) (PVP) with titanium dioxide (TiO2), followed by electrospinning. The influence of the solution flow rate was 20, 10, 5 and 1 ml h–1 during the synthesis of the nanostructure polymer/semiconductor composite examine. Raman and photoluminescence analyses confirm the presence of TiO2 anatase phase; both intensity and broadening of peaks are sensitive to the flow rate. X-ray diffraction patterns show sharp and well-defined peaks, which correspond to the anatase phase, also the relative intensity of the peaks varies with the flow rate. Field-emission scanning electron microscope images reveal that nanoparticles were formed initially, which gradually transforms into nanofibres, thus forming a nanostructured composite. The study is the focus on the form of multiple nanostructures that can be easily controlled by changing the solution flow rate during electrospinning. We focused to synthesize both nanoparticles and nanofibres using electrospinning compared to what has been done in previous studies, where only nanofibres have been obtained. We studied the transformation of nanoparticles into nanofibres with respect to change in flow rate; it gives us many options for the fabrication of polymer solar cell layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Fischer F and Bauer S 2009 Chem. Unserer Zeit 43 376

    Article  CAS  Google Scholar 

  2. Al-Hazeem N Z, Ahmed N M, Matjafri M and Ramizy A 2021 Nanocomposites 7 70

    Article  CAS  Google Scholar 

  3. Al-Hazeem N Z, Ahmed N M, MatJafri M and Bououdina M 2021 Microsyst. Technol. 27 293

    Article  CAS  Google Scholar 

  4. Pravarthana D, Tyagi A, Jagadale T, Prellier W and Aswal D 2021 Appl. Surf. Sci. 549 149281

    Article  Google Scholar 

  5. Fujishima A 1972 Nature 238 37

    Article  CAS  Google Scholar 

  6. Chuangchote S, Sagawa T and Yoshikawa S 2008 Appl. Phys. Lett. 93 33310

    Article  Google Scholar 

  7. Zhang Q, Gao L and Guo J 2000 J. Eur. Ceram. Soc. 20 2153

    Article  CAS  Google Scholar 

  8. Lei L, Yuming C, Bo L, Xingfu Z and Weiping D 2010 Appl. Surf. Sci. 256 2596

    Article  Google Scholar 

  9. Nyamukamba P, Okoh O, Mungondori H, Taziwa R and Zinya S 2018 Titanium dioxide—material for a sustainable environment (ed) D Yang 151 (https://doi.org/10.5772/intechopen.75425)

  10. Kumar A, Jose R, Fujihara K, Wang J and Ramakrishna S 2007 Chem. Mater. 19 6536

    Article  CAS  Google Scholar 

  11. Al-Hazeem N Z A 2018 Novel nanomaterials—synthesis and applications (ed) George Z Kyzas and Athanasios C Mitropoulos, In TechOpen 191

  12. Zhang W, Zhu R, Liu X, Liu B and Ramakrishna S 2009 Appl. Phys. Lett. 95 43304

    Article  Google Scholar 

  13. Wu H, Hu L, Rowell M W, Kong D, Cha J J, McDonough J R et al 2010 Nano Lett. 10 4242

    Article  CAS  Google Scholar 

  14. Al-Hazeem N Z and Ahmed N M 2020 ACS Omega 5 22389

    Article  CAS  Google Scholar 

  15. Tang Z S, Bolong N, Saad I, Ismail A F and Lim F T Y 2017 Adv. Sci. Lett. 23 11237

    Article  Google Scholar 

  16. Rodoplu D and Mutlu M 2012 J. Eng. Fibers Fabr. 7 118

    CAS  Google Scholar 

  17. Liu F, Guo R, Shen M, Wang S and Shi X 2009 Macromol. Mater. Eng. 294 666

    Article  CAS  Google Scholar 

  18. Zargham S, Bazgir S, Tavakoli A, Rashidi A S and Damerchely R 2012 J Eng Fibers Fabr. 7 42

    CAS  Google Scholar 

  19. Supaphol P, Mit‐Uppatham C and Nithitanakul M 2005 J. Polym. Sci. Part B Polym. Phys. 43 3699

  20. Zhou F-L, Gong R-H and Porat I 2009 J. Mater. Sci. 44 5501

    Article  CAS  Google Scholar 

  21. Yuan X, Zhang Y, Dong C and Sheng J 2004 Polym. Int. 53 1704

    Article  CAS  Google Scholar 

  22. Wu G, Yang F, Tan Z, Ge H and Zhang H 2012 Iran Polym. J. 21 793

    Article  CAS  Google Scholar 

  23. Nakhowong R 2020 SNRU J. Sci. Tech. 12 137

    Google Scholar 

  24. Strongone V, Bartoli M, Jagdale P, Arrigo R, Tagliaferro A and Malucelli G 2020 Polymers 12 796

    Article  CAS  Google Scholar 

  25. Selvanathan V, Yahya R, Ruslan M H, Sopian K, Amin N, Nour M et al 2020 Polymers 12 516

    Article  CAS  Google Scholar 

  26. Lee J E, Kim Y, Na Y H, Baek N S, Jung J W, Choi Y et al 2021 Polymers 13 393

    Article  CAS  Google Scholar 

  27. Bai J, Li Y, Zhang C, Liang X and Yang Q 2008 Colloids Surf. A Physicochem. Eng. Asp. 329 165

    Article  CAS  Google Scholar 

  28. Arbiol J, Cerda J, Dezanneau G, Cirera A, Peiro F, Cornet A et al 2002 J. Appl. Phys. 92 853

    Article  CAS  Google Scholar 

  29. Ruiz A M, Dezanneau G, Arbiol J, Cornet A and Morante J R 2004 Chem. Mater. 16 862

    Article  CAS  Google Scholar 

  30. Nuansing W, Ninmuang S, Jarernboon W, Maensiri S and Seraphin S 2006 Mater. Sci. Eng. B 131 147

    Article  CAS  Google Scholar 

  31. Avram D, Patrascu A A, Istrate M C, Cojocaru B and Tiseanu C 2021 J. Alloys Compd. 851 156849

    Article  CAS  Google Scholar 

  32. Hanaor D A and Sorrell C C 2011 J. Mater. Sci. 46 855

    Article  CAS  Google Scholar 

  33. Someswararao M, Dubey R and Subbarao P 2021 J. Photochem. Photobiol. 6 100016

    Article  Google Scholar 

  34. Pal M, Pal U, Jiménez J M G Y and Pérez-Rodríguez F 2012 Nanoscale Res. Lett. 7 1

    Article  Google Scholar 

  35. Santara B, Pal B and Giri P 2011 J. Appl. Phys. 110 114322

    Article  Google Scholar 

  36. Ding K, Miao Z, Liu Z, Zhang Z, Han B, An G et al 2007 J. Am. Chem. Soc. 129 6362

    Article  CAS  Google Scholar 

  37. Ren X, Yang L, Li Y and Li X 2021 Appl. Surf. Sci. 544 148879

    Article  CAS  Google Scholar 

  38. Melendres C, Narayanasamy A, Maroni V and Siegel R 1989 MRS Proceedings (Cambridge University Press) p 21

  39. Dhage S R, Choube V D, Samuel V and Ravi V 2004 Mater. Lett. 58 2310

    Article  CAS  Google Scholar 

  40. Rianjanu A, Kusumaatmaja A, Suyono E A and Triyana K 2018 Heliyon 4 e00592

    Article  Google Scholar 

  41. Arinstein A and Zussman E 2011 J. Polym. Sci. Part B Polym. Phys. 49 691

  42. Mahdavi H, Mazinani N and Heidari A A 2020 Polym. Int. 69 1187

    Article  CAS  Google Scholar 

  43. Zargham S, Bazgir S, Tavakoli A, Rashidi A S and Damerchely R 2012 J. Eng. Fibers Fabr. 7 155892501200700400

    Google Scholar 

  44. Homayoni H, Ravandi S A H and Valizadeh M 2009 Carbohydr. Polym. 77 656

    Article  CAS  Google Scholar 

  45. Ahmadi T, Monshi A, Mortazavi V, Fathi M H, Sharifi S, Kharaziha M et al 2020 Mater. Sci. Eng. C 106 110172

    Article  CAS  Google Scholar 

  46. Vijayalakshmi R and Rajendran V 2012 Arch. Appl. Sci. Res. 4 1183

    CAS  Google Scholar 

  47. Song S, Sheng Z, Liu Y, Wang H and Wu Z 2012 J. Environ. Sci. 24 1519

    Article  CAS  Google Scholar 

  48. Dhanalakshmi J, Iyyapushpam S, Nishanthi S, Malligavathy M and Padiyan D P 2017 Adv. Nat. Sci.: Nanosci. Nanotechnol. 8 015015

    Google Scholar 

  49. Lee H U, Lee S C, Choi S H, Son B, Lee S J, Kim H J et al 2013 Appl. Catal. B 129 106

    Article  CAS  Google Scholar 

  50. Yu J C, Ho W, Yu J, Yip H, Wong P K and Zhao J 2005 Environ. Sci. Technol. 39 1175

    Article  CAS  Google Scholar 

  51. Rockafellow E M, Stewart L K and Jenks W S 2009 Appl. Catal. B 91 554

    Article  CAS  Google Scholar 

  52. Gilbert B, Huang F, Zhang H, Waychunas G A and Banfield J F 2004 Science 305 651

    Article  CAS  Google Scholar 

  53. Mo S-D and Ching W 1995 Phys. Rev. B 51 13023

    Article  CAS  Google Scholar 

  54. Valencia S, Marín J M and Restrepo G 2009 Open. Mater. Sci. 4 9

    Google Scholar 

Download references

Acknowledgements

We would like to thank the Institute of Nano Optoelectronics Research and Technology (INOR) and the School of Physics at Universiti Sains Malaysia (USM) for supporting this research and providing the appropriate research environment. Our gratitude also goes to the Research Creativity and Management Office (RCMO) USM, for supporting us with the Short-Term grant (304. CINOR.6315364).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabeel Z Al-Hazeem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Hazeem, N.Z., Hassan, Z., Mohammad, S.M. et al. Formation of titanium dioxide/poly(vinylpyrrolidone) nanostructure composite by changing the flow rate of polymer solution during electrospinning. Bull Mater Sci 45, 67 (2022). https://doi.org/10.1007/s12034-022-02656-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-022-02656-x

Keywords

Navigation