Skip to main content
Log in

Synthesis of montmorillonite-modified acrylic impact modifiers and toughening of poly(vinyl chloride)

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

A series of Na-montmorillonite (Na+-MMT) modified acrylic impact modifiers (mAIM) were prepared by seeded emulsion polymerization. These mAIM modifiers were characterized by XRD. A 0.24 nm of increased interlayer distance of Na+-MMT was an indication of polymer chains intercalation within interlayer spacing. The notched Izod impact tests proved that the impact strength of the PVC/AIM composites prepared by melt blending was 43 J/m, markedly higher than the impact strength of pure PVC. Furthermore, with increasing content of AIM, the composites exhibited changes from brittle fracture to ductile fracture, with the impact strength increasing from 200 to about 1,000 J/m. The impact strength of PVC/mAIM also showed the same trend, although there were drops in some values. The impact strength of PVC/mAIM composites decreased with the increases in Na+-MMT content, but the yield strength and modulus of the composites increased with higher Na+-MMT content. The result also showed that the tensile strength of mAIM with 2 wt % Na+-MMT is lower than that of mAIM with 0.8 and 1 wt % contents, but still sufficiently large in comparison to the tensile strength of mAIM with 0 wt % Na+-MMT. The dynamic mechanical analysis (DMA) result showed that the glass transition temperature (T g) of mAIM did not show obvious changes and the elasticity of mAIM was reduced with the additional Na+-MMT content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sirapanichart S, Monvisade P, Siriphannon P, Nukeaw J (2011) Poly(methyl methacrylate-co-butyl acrylate)/organophosphate-modified montmorillonite composites. Iran Polym J 20:803–811

    CAS  Google Scholar 

  2. Ayatollahi MR, Shokrien MM, Shadlou S, Kefayati AR, Chitsazzadeh M (2011) Mechanical and electrical properties of epoxy/multi-walled carbon nanotube/nanoclay nanocomposites. Iran Polym J 20:835–843

    CAS  Google Scholar 

  3. Giannelis EP (1996) Polymer layered silicate nanocomposites. Adv Mater 8:29–35

    Article  CAS  Google Scholar 

  4. Lan T, Kaviratna PD, Pinnavaia TJ (1995) Mechanism of clay tactoid exfoliation in epoxy-clay nanocomposites. Chem Mater 7:2144–2150

    Article  CAS  Google Scholar 

  5. Shi H, Lan T, Pinnavaia TJ (1996) Interfacial effects on the reinforcement properties of polymer-organoclay nanocomposites. Chem Mater 8:1584–1587

    Article  CAS  Google Scholar 

  6. Gilman JW (1999) Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Appl Clay Sci 15:31–49

    Article  CAS  Google Scholar 

  7. Morgan AB (2006) Flame retarded polymer layered silicate nanocomposites: a review of commercial and open literature systems. Polym Adv Technol 17:206–217

    Article  CAS  Google Scholar 

  8. Schartel B, Knoll U, Hartwig A, Putz D (2006) Phosphonium-modified layered silicate epoxy resins nanocomposites and their combinations with ATH and organo-phosphorus fire retardants. Polym Adv Technol 17:281–293

    Article  CAS  Google Scholar 

  9. Lee JW, Lim YT, Park OO (2000) Thermal characteristics of organoclay and their effects upon the formation of polypropylene/organoclay nanocomposites. Polym Bull 45:191–198

    Article  CAS  Google Scholar 

  10. Wang KH, Xu M, Choi YS, Chung IJ (2001) Effect of aspect ratio on melt extensional process of maleated polyethylene/clay nanocomposites. Polym Bull 46:499–505

    Article  CAS  Google Scholar 

  11. Wang KH, Choi MH, Koo CM, Xu M, Chung IJ, Jang MC, Choi SW, Song HH (2002) Morphology and physical properties of polyethylene/silicate nanocomposite prepared by melt intercalation. J Polym Sci B, Polym Phys 40:1454–1463

    Article  CAS  Google Scholar 

  12. Chen CH, Teng CC, Tsai MS, Yen FS (2006) Preparation and characterization of rigid poly(vinyl chloride)/MMT nanocomposites. II. XRD, morphological and mechanical characteristics. J Polym Sci B, Polym Phys 44:2145–2154

    Article  CAS  Google Scholar 

  13. Matuana LM (2009) Rigid PVC/(layered silicate) nanocomposites produced through a novel melt-blending approach. J Vinyl Addit Technol 15:77–86

    Article  CAS  Google Scholar 

  14. Usuki A, Kojima Y, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O (1993) Synthesis of nylon 6-clay hybrid. J Mater Res 8:1179–1184

    Article  CAS  Google Scholar 

  15. Usuki A, Kawasumi M, Kojima Y, Okada A, Kurauchi T, Kamigaito O (1993) Swelling behavior of montmorillonite cation exchanged for ω-amino acids by ε-caprolactam. J Mater Res 8:1174–1178

    Article  CAS  Google Scholar 

  16. Furuichi N, Kurokawa Fujita K, Oya A, Yasuda H, Kiso M (1996) Preparation and properties of polypropylene reinforced by smectite. J Mater Sci 31:4307–4310

    Article  CAS  Google Scholar 

  17. Kurokawa Y, Yasuda H, Kashiwagi M, Oyo A (1997) Structure and properties of a montmorillonite/polypropylene nanocomposite. J Mater Sci Lett 16:1670–1672

    Article  CAS  Google Scholar 

  18. Jeon HG, Jung HT, Lee SW, Hudson SD (1998) Morphology of polymer/silicate nanocomposites. Polym Bull 41:107–113

    Article  CAS  Google Scholar 

  19. Salimi A, Mirabedini SM, Atai M, Mohseni M (2011) Oxidized polypropylene wax in polypropylene nanocomposites: a comparative study on clay intercalation. Iran Polym J 20:377–387

    CAS  Google Scholar 

  20. Prado L, Karthikeyan CS, Schulte K, Nunes SP, Torriani I (2005) Organic modification of layered silicates: structural and thermal characterizations. J Non-Cryst Solids 351:970–975

    Article  CAS  Google Scholar 

  21. Wang SF, Lin ML, Shieh YN, Wang YR, Wang SJ (2007) Organic modification of synthesized clay-magadiite. Ceram Int 33:681–685

    Article  CAS  Google Scholar 

  22. Wu G, Zhao J, Shi H, Zhang H (2004) The influence of core-shell structured modifiers on the toughness of poly(vinyl chloride). Eur Polym J 40:2451–2456

    Article  CAS  Google Scholar 

  23. Sterky K, Jacobsen H, Jakubowicz I, Yarahmadi N, Hjertberg T (2010) Influence of processing technique on morphology and mechanical properties of PVC nanocomposites. Eur Polym J 46:1203–1209

    Article  CAS  Google Scholar 

  24. Wan C, Qiao X, Zhang Y, Zhang Y (2003) Effect of different clay treatment on morphology and mechanical properties of PVC-clay nanocomposites. Polym Test 22:453–461

    Article  CAS  Google Scholar 

  25. Madaleno L, Thomsen JS, Pinto JC (2010) Morphology, thermal and mechanical properties of PVC/MMT nanocomposites prepared by solution blending and solution blending + melt compounding. Compos Sci Technol 70:804–814

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The project was supported by NSFC (51173020, 50803007, 51003007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangfeng Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, G., Yang, F., Tan, Z. et al. Synthesis of montmorillonite-modified acrylic impact modifiers and toughening of poly(vinyl chloride). Iran Polym J 21, 793–798 (2012). https://doi.org/10.1007/s13726-012-0088-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-012-0088-0

Keywords

Navigation