Skip to main content
Log in

Three-jet electrospinning using a flat spinneret

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Electrospinning is a simple but highly versatile technology to produce nanofibers from solutions or melts mostly of polymers using electrostatic forces. A primary challenge facing electrospinning is its low productivity mainly limited by flow rate. In this work, a custom-made three-hole spinneret instead of conventional needles was adopted to enhance the flow rate of electrospinning. Three-jet formation, nanofiber deposition, nanofiber morphology and size were characterized by digital camera and scanning electron microscopy (SEM) as the effects of several governing parameters in electrospinning, including applied voltage from 19.8 to 21.0 kV, working distance from 15.2 to 16.8 cm and flow rate from 6.0 to 9.0 mL/h. It was found that three simultaneous stable jets were ejected from the three-hole spinneret under suitable operating conditions. Moreover, it was found that the fibers collected from the jets from each hole deposited separately in circular spots on a stationary collector. The resultant fibers mostly have an average diameter of less than 300 nm. It has been proved that simple holes on a flat surface can be used to electrospin nanofibers. The three-hole spinneret produces nanofibers at flow rates greater than that in single needle electrospinning. Flow rate has the potential to be easily scaled up by increasing the spinneret diameter and the number of holes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Srivastava Y, Marquez M, Thorsen T (2007) J Appl Polym Sci 106:3171

    Article  CAS  Google Scholar 

  2. Brown PJ, Stevens K (eds) (2007) Nanofibers and nanotechnology in textiles. Woodhead Publishing Limited, UK

    Google Scholar 

  3. Zhou FL, Gong RH, Porat I (2009) Polym Int 58:331

    Article  CAS  Google Scholar 

  4. Yarin AL, Zussman E (2004) Polymer 45:2977

    Article  CAS  Google Scholar 

  5. Lozano P, Martínez-Sánchez M, Lopez-Urdiales JM (2004) J Colloid Interface Sci 276:392

    Article  PubMed  CAS  Google Scholar 

  6. Bocanegra R et al (2005) J Aerosol Sci 36:1387

    Article  CAS  Google Scholar 

  7. Byun D et al (2008) Appl Phys Lett 92:093507

    Article  ADS  Google Scholar 

  8. Zhou FL, Gong RH, Porat I (2009) Polym Eng Sci (in production)

  9. Tang K et al (2001) Anal Chem 73:1658

    Article  PubMed  CAS  Google Scholar 

  10. Ding B et al (2006) Nanotechnology 17:3685

    Article  ADS  CAS  Google Scholar 

  11. Vaseashtaa A (2007) Appl Phys Lett 90:093115

    Article  ADS  Google Scholar 

  12. Zong X et al (2002) Polymer 43:4403

    Article  CAS  Google Scholar 

  13. Deitzel JM et al (2001) Polymer 42:261

    Article  CAS  Google Scholar 

  14. Bowman J et al (2003) Mater Res Soc Symp 752:AA1.5.1

    Google Scholar 

  15. Hubacz AN, Marijnissen JCM (2003) J Aerosol Sci 34(Suppl 1):S1269

    Google Scholar 

  16. Quang TSB, Byun D, Lee S (2007) J Aerosol Sci 38:924

    Article  Google Scholar 

  17. Theron SA et al (2005) Polymer 46:2889

    Article  CAS  Google Scholar 

  18. Tomaszewski W, Szadkowski M (2005) Fibers Text East Eur 52:22

    Google Scholar 

  19. Varabhas JS, Chase GG, Reneker DH (2008) Polymer 49:4226

    Article  CAS  Google Scholar 

  20. Subbiah T et al (2005) J Appl Polym Sci 96:557

    Article  CAS  Google Scholar 

  21. Geng X, Kwon OH, Jang J (2005) Biomaterials 26:5427

    Article  PubMed  CAS  Google Scholar 

  22. Buchko CJ et al (1999) Polymer 40:7397

    Article  CAS  Google Scholar 

  23. Megelski S et al (2002) Macromolecules 35:8456

    Article  ADS  CAS  Google Scholar 

  24. Wang C, Hsu CH, Lin JH (2006) Macromolecules 39:7662

    Article  ADS  CAS  Google Scholar 

  25. Demir MM et al (2002) Polymer 43:3303

    Article  CAS  Google Scholar 

  26. Hsu CM, Shivkumar S (2004) Macromol Mater Eng 289:334

    Article  CAS  Google Scholar 

  27. Heikkil P, Harlin A (2008) Eur Polym J 44:3067

    Article  Google Scholar 

  28. Thompson CJ et al (2007) Polymer 48:6913

    Article  CAS  Google Scholar 

  29. Fridrikh SV et al (2003) Phys Rev Lett 90:144502/1

    Article  ADS  CAS  Google Scholar 

  30. Sen AK, Darabi JD, Knapp DR (2007) Microfluid Nanofluid 3:283

    Article  CAS  Google Scholar 

  31. Duby MH et al (2006) J Aerosol Sci 37:306

    Article  CAS  Google Scholar 

  32. Zeng J et al (2003) J Appl Polym Sci 89:1085

    Article  CAS  Google Scholar 

  33. Li L, Hsieh YL (2005) Polymer 46:5133

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial supports from the ORS award and School of Materials, The University of Manchester, are gratefully acknowledged. We would also like to thank Mr. S. Butt for the constructions of the electrospinning setup and flat spinnerets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng-Lei Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, FL., Gong, RH. & Porat, I. Three-jet electrospinning using a flat spinneret. J Mater Sci 44, 5501–5508 (2009). https://doi.org/10.1007/s10853-009-3768-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3768-1

Keywords

Navigation