Skip to main content
Log in

Silicon-based qubit technology: progress and future prospects

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Pathbreaking advancements in the field of nanofabrication techniques have put qubit technology at the forefront of quantum computation. Thanks to Silicon (Si) with its unparalleled strong foundation in the existing classical computation, it is considered to be a promising candidate for the development of complementary metal-oxide semiconductor compatible quantum architecture. This review article vividly describes the underlying physics of the qubit operation in quantum dots. Further, the article gives an overview of the current state of the art technology and the remarkable progress made in the field of charge and spin qubits in Si and allied heterostructures in the last two decades. Emphasis has been given to address the challenges and the accomplishments made so far in the field of Si-based charge and spin qubit technology. The article also discusses the future prospects of qubit technology and the measures being adopted worldwide for the physical realization of envisioned quantum devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Copyright 2013 by the American Physical Society.

Figure 5
Figure 6
Figure 7
Figure 8

Copyright 2020, Springer Nature.

Figure 9

Copyright 2020, American Chemical Society.

Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Copyright 2021, Springer Nature.

Figure 15
Figure 16

Copyright 2021, Springer Nature.

Figure 17

source and drain contacts are shown in yellow and the top gate 1 and gate 2 in green, and the side gate is shown in violet. The thin gate oxide layer underneath is shown in orange colour and the buried oxide of the SOI wafer is displayed in blue, (b) False coloured SEM image of the device (top-view). (c) Schematic of the cross-sectional view of the device (along the dashed line in b), with the spacer layer of SiN shown in grey colour. The cross-sectional view of the Si NW (yellow background) displays a colour gradient mapping of the square of the tight-binding wavefunction. Reprinted with permission [81]. Copyright 2018, Springer Nature.

Figure 18
Figure 19

source to drain voltage of 2 mV. Reproduced with permission [88]. Copyright 2018, Springer Nature.

Figure 20

Copyright 2017, Springer Nature.

Similar content being viewed by others

References

  1. Steane A 1998 Rep. Prog. Phys. 61 117

    Article  CAS  Google Scholar 

  2. Knill E 2010 Nature 463 441

    Article  CAS  Google Scholar 

  3. Eriksson M A Coppersmith S N and Lagally M G 2013 MRS Bull. 38 794

  4. Nielsen E, Barnes E, Kestner J P and Das Sarma S 2013 Phys. Rev. B 88 195131

  5. Majer J, Chow J M, Gambetta J M, Koch J, Johnson B R, Schreier J A et al 2007 Nature 449 443

    Article  CAS  Google Scholar 

  6. Krantz P, Kjaergaard M, Yan F, Orlando T P, Gustavsson S and Oliver W D 2019 Appl. Phys. Rev. 6 021318

  7. Liu Y, Wei L F, Johansson J R, Tsai J S and Nori F 2007 Phys. Rev. B 76 144518

  8. Schmidt-Kaler F, Häffner H, Gulde S, Riebe M, Lancaster G P T, Deuschle T et al 2003 Appl. Phys. B 77 789

    Article  CAS  Google Scholar 

  9. Tyryshkin A M, Morton J J L, Benjamin S C, Ardavan A, Briggs G A D, Ager J W et al 2006 J. Phys. Condens. Matter 18 S783

    Article  CAS  Google Scholar 

  10. Mohammady M H, Morley G W, Nazir A and Monteiro T S 2012 Phys. Rev. B 85 094404

  11. Micheli A, Daley A J, Jaksch D and Zoller P 2004 Phys. Rev. Lett. 93 140408

  12. Hayashi T, Fujisawa T, Cheong H D, Jeong Y H and Hirayama Y 2003 Phys. Rev. Lett. 91 226804

  13. Chiorescu I, Nakamura Y, Harmans C J P M and Mooij J E 2003 Science 299 1869

    Article  CAS  Google Scholar 

  14. Elzerman J M, Hanson R, Willems van Beveren L H, Witkamp B, Vandersypen L M K and Kouwenhoven L P 2004 Nature 430 431

  15. MacQuarrie E R, Neyens S F, Dodson J P, Corrigan J, Thorgrimsson B, Holman N et al 2020 NPJ Quantum Inf. 6 1

    Article  Google Scholar 

  16. van der Wiel W G, De Franceschi S, Elzerman J M, Fujisawa T, Tarucha S and Kouwenhoven L P 2002 Rev. Mod. Phys. 75 1

    Article  Google Scholar 

  17. Kastner M A 1993 Phys. Today 46 24

    Article  CAS  Google Scholar 

  18. Reed M, Randall J, Aggarwal R, Matyi R, Moore T and Wetsel A 1988 Phys. Rev. Lett. 60 535

    Article  CAS  Google Scholar 

  19. Petersson K D, Petta J R, Lu H and Gossard A C 2010 Phys. Rev. Lett. 105 246804

  20. Elzerman J M, Hanson R, Greidanus J S, van Beveren L H W, De Franceschi S, Vandersypen L M K et al 2003 Phys. Rev. B 67 161308

  21. Cao G, Li H-O, Tu T, Wang L, Zhou C, Xiao M et al 2013 Nat. Commun. 4 1401

    Article  Google Scholar 

  22. Dovzhenko Y, Stehlik J, Petersson K D, Petta J R, Lu H and Gossard A C 2011 Phys. Rev. B 84 161302

  23. Shi Z, Simmons C B, Ward D R, Prance J R, Mohr RT, Koh T S et al 2013 Phys. Rev. B 88 075416

  24. Kim D, Ward D R, Simmons C B, Gamble J K, Blume-Kohout R, Nielsen E et al 2015 Nat. Nanotechnol. 10 243

    Article  CAS  Google Scholar 

  25. Petersson K D, Smith C G, Anderson D, Atkinson P, Jones G A C and Ritchie D A 2009 Phys. Rev. Lett. 103(1) 16805

    Article  CAS  Google Scholar 

  26. Zhang C, Chen T, Wang X and Xue Z-Y 2021 Adv. Quantum Technol. 2100011

  27. Shi Z, Simmons C B, Ward D R, Prance J R, Mohr R T, Koh T S et al 2013 Phys. Rev. B 88 075416

  28. Yang T-Y, Andreev A, Yamaoka Y, Ferrus T, Oda S, Kodera T et al 2016 IEEE International electron devices meeting 34.2.1

  29. Oosterkamp T H, Fujisawa T, van der Wiel W G, Ishibashi K, Hijman R V, Tarucha S et al 1998 Nature 395 873

    Article  CAS  Google Scholar 

  30. Freeman B M, Schoenfield J S and Jiang H 2016 Appl. Phys. Lett. 108 253108

  31. Connors E J, Nelson J, Qiao H, Edge L F and Nichol J M 2019 Phys. Rev. B 100 165305

  32. Maune B M, Borselli M G, Huang B, Ladd T D, Deelman P W, Holabird K S et al 2012 Nature 481 344

    Article  CAS  Google Scholar 

  33. Lu T-M, Bishop N, Pluym T, Kotula P, Lilly M and Carroll M 2013 ECS Trans. 50 837

    Article  Google Scholar 

  34. Gorman J, Hasko D G and Williams D A 2005 Phys. Rev. Lett. 95 090502

  35. Fujiwara A, Inokawa H, Yamazaki K, Namatsu H, Takahashi Y, Zimmerman N M et al 2006 Appl. Phys. Lett. 88 053121

  36. Shaji N, Simmons C B, Thalakulam M, Klein L J, Qin H, Luo H et al 2008 Nat. Phys. 4 540

    Article  CAS  Google Scholar 

  37. MacQuarrie E R, Neyens S F, Dodson J P, Corrigan J, Thorgrimsson B, Holman N, Palma M et al 2020 NPJ Quantum Inf. 6 81

    Article  Google Scholar 

  38. Ward D R, Kim D, Savage D E, Lagally M G, Foote R H, Friesen M et al 2016 NPJ Quantum Inf. 2 16032

    Article  Google Scholar 

  39. Eto M and Hada Y 2006 AIP Conf. Proc. 850 1382

    Article  CAS  Google Scholar 

  40. Schoenfield J S, Freeman B M and Jiang H 2017 Nat. Commun. 8 64

    Article  Google Scholar 

  41. Penthorn N E, Schoenfield J S, Rooney J D, Edge L F and Jiang H 2019 NPJ Quantum Inf. 5 94

    Article  Google Scholar 

  42. Hu Y, Churchill H H O, Reilly D J, Xiang J, Lieber C M and Marcus C M 2007 Nat. Nanotechnol. 2 622

    Article  CAS  Google Scholar 

  43. Roddaro S, Fuhrer A, Brusheim P, Fasth C, Xu H Q, Samuelson L et al 2008 Phys. Rev. Lett. 101 186802

  44. Wang R, Deacon R S, Sun J, Yao J, Lieber C M and Ishibashi K 2019 Nano Lett. 19 1052

    Article  CAS  Google Scholar 

  45. Yang T-Y, Das S, Ferrus T, Andreev A and Williams DA 2014 Silicon nanoelectronics workshop (SNW) (Honolulu, HI, USA) 1

  46. Pioro-Ladrière M, Ciorga M, Lapointe J, Zawadzki P, Korkusiński M, Hawrylak P et al 2003 Phys. Rev. Lett. 91 026803

  47. Petta J R, Johnson A C, Taylor J M, Laird E A, Yacoby A, Lukin M D et al 2005 Science 309 2180

    Article  CAS  Google Scholar 

  48. Wellard C J and Hollenberg L C L 2002 J. Phys. Appl. Phys. 35 2499

    Article  CAS  Google Scholar 

  49. Economou S E, Sham L J, Wu Y and Steel D G 2006 Phys. Rev. B 74 205415

  50. Kawakami E, Scarlino P, Ward D R, Braakman F R, Savage D E, Lagally M G et al 2014 Nat. Nanotech. 9 666

    Article  CAS  Google Scholar 

  51. Pla J J, Tan K Y, Dehollian J P and Lim W H 2012 Nature 489 541

    Article  CAS  Google Scholar 

  52. Fricke L, Hile S J, Kranz L, Chung Y, He Y, Pakkiam P et al 2021 Nat. Commun. 12 3323

    Article  CAS  Google Scholar 

  53. Tahan C 2019 Nat. Nanotechnol. 14 102

    Article  CAS  Google Scholar 

  54. Merlet F, Pajot B, Arcas Ph and Jean-Louis A M 1975 Phys. Rev. B 12 3297

    Article  CAS  Google Scholar 

  55. Takui T, Berliner L and Hanson G 2016 Electron spin resonance (ESR) based quantum computing (New York: Springer)

    Book  Google Scholar 

  56. Morello A, Pla J J, Zwanenburg F A, Chan K W, Tan K Y, Huebl H et al 2010 Nature 467 687

    Article  CAS  Google Scholar 

  57. Clemmen S, Farsi A, Ramelow S and Gaeta A L 2016 Phys. Rev. Lett. 117 223601

  58. Koppens F H L, Buizert C, Tielrooij K J, Vink I T, Nowack K C, Meunier T et al 2006 Nature 442 766

    Article  CAS  Google Scholar 

  59. Hollenberg L C L, Dzurak A S, Wellard C, Hamilton A R, Reilly D J, Milburn G J et al 2004 Phys. Rev. B 69 113301

  60. Shlimak I and Vagner I 2007 Phys. Rev. B 75 045336

  61. Veldhorst M, Hwang J C C, Yang C H, Leenstra A W, de Ronde B, Dehollain J P et al 2014 Nat. Nanotechnol. 9 981

    Article  CAS  Google Scholar 

  62. Wellard C J, Hollenberg L C L, Parisoli F, Kettle L M, Goan H-S, McIntosh J A L et al 2003 Phys. Rev. B 68 195209

  63. O’Brien J L, Schofield S R, Simmons M Y, Clark R G, Dzurak A S, Curson N J, Kane B E et al 2001 Phys. Rev. B 64 161401

  64. Fuechsle M, Miwa J A, Mahapatra S, Ryu H, Lee S, Warschkow O et al 2012 Nat. Nanotechnol. 7 242

    Article  CAS  Google Scholar 

  65. Jamieson D N, Yang C, Hopf T, Hearne S M, Pakes C I, Prawer S et al 2005 Appl. Phys. Lett. 86 202101

  66. Weis C D, Lo C C, Lang V, Tyryshkin A M, George R E, Yu K M et al 2012 Appl. Phys. Lett. 100 172104

  67. Morello A, Tosi G, Mohiyaddin F A, Schmitt V, Mourik V, Botzem T et al 2018 IEEE International electron devices meeting (IEDM), 6.2.1

  68. Pla J J, Tan K Y, Dehollain J P, Lim W H, Morton J J L, Zwanenburg F A et al 2013 Nature 496 334

    Article  CAS  Google Scholar 

  69. Madzik M T, Laucht A, Hudson F E, Jakob A M, Johnson B C, Jamieson D N et al 2021 Nat. Commun. 12 1

  70. Cirac J I and Zoller P 2000 Nature 404 579

    Article  CAS  Google Scholar 

  71. Hallam T, Rueß F, Curson N, Goh K, Oberbeck L, Simmons M et al 2005 Appl. Phys. Lett. 86 143116

  72. Maurand R, Jehl X, Kotekar-Patil D, Corna A, Bohuslavskyi H, Laviéville R et al 2016 Nat. Commun. 7 13575

    Article  CAS  Google Scholar 

  73. Angus S J, Ferguson A J, Dzurak A S and Clark R G 2007 Nano Lett. 7 2051

    Article  CAS  Google Scholar 

  74. Yang C H, Rossi A, Ruskov R, Lai N S, Mohiyaddin F A, Lee S et al 2013 Nat. Commun. 4 2069

    Article  CAS  Google Scholar 

  75. Veldhorst M, Ruskov R, Yang C H, Hwang J C C, Hudson F E, Flatté M E et al 2015 Phys. Rev. B 92 201401

  76. Veldhorst M, Hwang J C C, Yang C H, Leenstra A W, de Ronde B, Dehollain J P et al 2014 Nat. Nanotech. 9 981

    Article  CAS  Google Scholar 

  77. Jones C, Fogarty M A, Morello A, Gyure M F, Dzurak A S and Ladd T D 2018 Phys. Rev. X 8 021058

  78. Hao X, Ruskov R, Xiao M, Tahan C and Jiang H 2014 Nat. Commun. 5 3860

    Article  CAS  Google Scholar 

  79. Zajac D M, Sigillito A J, Russ M, Borjans F, Taylor J M, Burkard G and Petta J R 2018 Science 359 439

    Article  CAS  Google Scholar 

  80. Hendrickx N W, Franke D P, Sammak A, Scappucci G and Veldhorst M 2020 Nature 577 487

    Article  CAS  Google Scholar 

  81. Corna A, Bourdet L, Maurand R, Crippa A, Kotekar-Patil D, Bohuslavskyi H et al 2018 NPJ Quantum Inf. 4 1

    Article  Google Scholar 

  82. Bourdet L, Hutin L, Bertrand B, Corna A, Bohuslavskyi H, Amisse A et al 2018 IEEE Trans. Electron Devices 65 5151

    Article  CAS  Google Scholar 

  83. Galy P, Camirand Lemyre J, Lemieux P, Arnaud F, Drouin D and Pioro-Ladrière M 2018 IEEE J. Electron Devices Soc. 6 594

    Article  CAS  Google Scholar 

  84. Bashir I, Blokhina E, Esmailiyan A, Leipold D, Asker M, Koskin E et al 2020 IEEE Solid-State Circuits Lett. 3 206

    Article  Google Scholar 

  85. Hutin L, Bertrand B, Maurand R, Crippa A, Urdampilleta M, Kim Y J et al 2018 48th European solid-state device research conference (ESSDERC), 12

  86. Uddin W, Georgiev Y M, Maity S and Das S 2017 J. Phys. Appl. Phys. 50 365104

  87. Uddin W, Maity S, Dhyani V, Ahmad G, Georgiev Y M and Das S 2020 Semicond. Sci. Technol. 35 065011

  88. Watzinger H, Kukučka J, Vukušić L, Gao F, Wang T, Schäffler F et al 2018 Nat. Commun. 9 3902

    Article  Google Scholar 

  89. Veldhorst M, Yang C H, Hwang J C C, Huang W, Dehollain J P, Muhonen J T et al 2015 Nature 526 410

    Article  CAS  Google Scholar 

  90. Muhonen J T, Dehollain J P, Laucht A, Hudson F E, Kalra R, Sekiguchi T et al 2014 Nat. Nanotechnol. 9 986

    Article  CAS  Google Scholar 

  91. Petit L, Russ M, Eenink H, Lawrie W, Clarke J, Vandersypen L et al 2020 ArXiv Prepr. ArXiv200709034

  92. He Y, Gorman S, Keith D, Kranz L, Keizer J and Simmons M 2019 Nature 571 371

    Article  CAS  Google Scholar 

  93. Yoneda J, Takeda K, Otsuka T, Nakajima T, Delbecq M R, Allison G et al 2018 Nat. Nanotechnol. 13 102

    Article  CAS  Google Scholar 

  94. Xue X, Watson T, Helsen J, Ward D R, Savage D E, Lagally M G et al 2019 Phys. Rev. X 9 021011

  95. Watson T, Philips S, Kawakami E, Ward D, Scarlino P, Veldhorst M et al 2018 Nature 555 633

    Article  CAS  Google Scholar 

  96. Sigillito A, Gullans M, Edge L, Borselli M and Petta J 2019 NPJ Quantum Inf. 5 1

    Article  Google Scholar 

  97. Nadj-Perge S, Frolov S, Bakkers E and Kouwenhoven L P 2010 Nature 468 1084

    Article  CAS  Google Scholar 

  98. Vandersypen L M K, Bluhm H, Clarke J S, Dzurak A S, Ishihara R, Morello A et al 2017 NPJ Quantum Inf. 3 1

    Article  Google Scholar 

  99. Arute F, Arya K, Babbush R, Bacon D, Bardin J C, Barends R et al 2019 Nature 574 505

    Article  CAS  Google Scholar 

  100. Burkard G and Imamoglu A 2006 Phys. Rev. B 74 041307

  101. Trifunovic L, Dial O, Trif M, Wootton J R, Abebe R, Yacoby A et al 2012 Phys. Rev. X 2 011006

  102. Friesen M, Biswas A, Hu X and Lidar D 2007 Phys. Rev. Lett. 98 230503

Download references

Acknowledgements

We are thankful to the Defense Research and Development Organization (DRDO), New Delhi, India, for the financial support. SD is thankful to the Grand Challenge Project, IIT Delhi, for providing the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samaresh Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uddin, W., Khan, B., Dewan, S. et al. Silicon-based qubit technology: progress and future prospects. Bull Mater Sci 45, 46 (2022). https://doi.org/10.1007/s12034-021-02621-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02621-0

Keywords

Navigation