Skip to main content
Log in

Anomalous interfacial stress generation and role of elasto-plasticity in mechanical failure of Si-based thin film anodes of Li-ion batteries

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

To understand the reason for mechanical failure and capacity fading of Si-based composite thin film batteries, we have developed a lithiation-induced interfacial stress model. The role of electrochemical charging reaction process, stiffness-induced elasto-plastic deformation and relative change in resistivity in detail through regional material heterogeneity sensitivity exponent has been accounted for anomalous interfacial stress generation. The insight gained from the results of state-of-health of the battery electrodes suggests that the transition of material from elastic to plastic behaviour and cracking at the interface are due to volume expansion, i.e., fully lithiated. Finally, the unified lithiation-induced stress model unravels the effect of embedded material heterogeneity parameters coupled with resistivity and stiffness and its anomalous dynamics at composite electrode–collector interface. The verification with the available experimental data in the literature has also been made and hence providing a better insight into the origin of degradation and the evaluation of advanced battery electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Gonzalez A F, Yang N-H and Liu R-S 2017 J. Phys. Chem. C 121 27775

    Google Scholar 

  2. Yin Q, Guo Z, Li Y and Yao H 2018 J. Phys. Chem. C 122 16374

    CAS  Google Scholar 

  3. Tanaka M, Hooper J B and Bedrov D 2018 ACS Appl. Energy Mater. 1 1858

    CAS  Google Scholar 

  4. Martin L, Vallverdu G, Martinez H, Le Cras F and Baraille I 2012 J. Mater. Chem. 22 22063

    CAS  Google Scholar 

  5. Bucci G, Swamy T, Chiang Y M and Carter W C 2017 J. Mater. Chem. A 5 19422

    CAS  Google Scholar 

  6. Hao F, Wang W and Mukherjee P P 2019 Phys. Rev. Appl. 11 1

    Google Scholar 

  7. Luo J, Sun Y, Wang B, Jin Z, Yang S, Wang Y et al 2018 AIP Adv. 8 1

    Google Scholar 

  8. Jangid M K and Mukhopadhyay A 2019 J. Mater. Chem. A 7 23679

    CAS  Google Scholar 

  9. Li Z, Jiang K, Khan F, Goswami A, Liu J, Passian A et al 2019 Sci. Adv. 5 eaav2820

  10. Xu R, Yang Y, Yin F, Liu P, Cloetens P, Liu Y et al 2019 J. Mech. Phys. Solids 129 160

    CAS  Google Scholar 

  11. Liu X H, Zheng H, Zhong L, Huang S, Karki K, Zhang L Q et al 2011 Nano Lett. 11 3312

    CAS  Google Scholar 

  12. Yang H, Huang S, Huang X, Fan F, Liang W, Liu X H et al 2012 Nano Lett. 12 1953

    CAS  Google Scholar 

  13. Lee S W, McDowell M T, Berla L A, Nix W D, Cui Y, Woo S et al 2012 Proc. Natl. Acad. Sci. USA 109 4080

    CAS  Google Scholar 

  14. Ryu I, Lee S W, Gao H, Cui Y and Nix W D 2014 J. Power Sources 255 274

    CAS  Google Scholar 

  15. Yang H, Liang W, Guo X, Wang C M and Zhang S 2015 Extrem. Mech. Lett. 2 1

    Google Scholar 

  16. Zhang S 2017 NPJ Comput. Mater. 3 1

    Google Scholar 

  17. Liu X H, Fan F, Yang H, Zhang S, Huang J Y and Zhu T 2013 ACS Nano 7 1495

    CAS  Google Scholar 

  18. Wu H, Chan G, Choi J W, Ryu I, Yao Y, Mcdowell M T et al 2012 Nat. Nanotechnol. 7 310

    CAS  Google Scholar 

  19. Mao O, Turner R L, Courtney I A, Fredericksen B D, Buckett M I, Krause L J et al 1999 Electrochem. Solid-State Lett. 2 3

    CAS  Google Scholar 

  20. Kim I, Kumta P N and Blomgren G E 2000 Electrochem. Solid State Lett. 3 493

    CAS  Google Scholar 

  21. Wu H and Cui Y 2012 Nano Today 7 414

    CAS  Google Scholar 

  22. Liu N, Lu Z, Zhao J, Mcdowell M T, Lee H-W, Zhao W and Cui Y 2014 Nat. Nanotechnol. 9 187

    CAS  Google Scholar 

  23. Li X, Gu M, Hu S, Kennard R, Yan P, Chen X et al 2014 Nat. Commun. 5 1

    Google Scholar 

  24. Zhang Z, Wang Y, Ren W, Tan Q, Chen Y, Li H et al 2014 Angew. Chemie—Int. Ed. 126 5265

    Google Scholar 

  25. Wu H, Yu G, Pan L, Liu N, McDowell M T, Bao Z et al 2013 Nat. Commun. 4 1

    Google Scholar 

  26. Yuan Y, Amine K, Lu J and Shahbazian-Yassar R 2017 Nat. Commun. 8 1

    Google Scholar 

  27. McDowell M T, Woo Lee S, Wang C and Cui Y 2012 Nano Energy 1 401

    CAS  Google Scholar 

  28. Luo W, Wang Y, Wang L, Jiang W, Chou S-L, Dou S X et al 2016 ACS Nano 10 10524

    CAS  Google Scholar 

  29. Ebner M, Marone F, Stampanoni M and Wood V 2013 Science 342 716

    CAS  Google Scholar 

  30. Li Y, El Gabaly F, Ferguson T R, Smith R B, Bartelt N C, Sugar J D et al 2014 Nat. Mater. 13 1149

    CAS  Google Scholar 

  31. Mukhopadhyay A and Sheldon B W 2014 Prog. Mater. Sci. 63 58

    CAS  Google Scholar 

  32. Sethuraman V A, Hardwick L J, Srinivasan V and Kostecki R 2010 J. Power Sources 195 3655

    CAS  Google Scholar 

  33. Sethuraman V A, Chon M J, Shimshak M, Srinivasan V and Guduru P R 2010 J. Power Sources 195 5062

    CAS  Google Scholar 

  34. Chon M J, Sethuraman V A, McCormick A, Srinivasan V and Guduru P R 2011 Phys. Rev. Lett. 107 1

    Google Scholar 

  35. Tavassol H, Jones E M C, Sottos N R and Gewirth A A 2016 Nat. Mater. 15 1182

    CAS  Google Scholar 

  36. Wang H, Nadimpalli S P V and Shenoy V B 2016 Extrem. Mech. Lett. 9 430

    Google Scholar 

  37. Loveridge M J, Lain M J, Johnson I D, Roberts A, Beattie S D, Dashwood R et al 2016 Sci. Rep. 6 1

    Google Scholar 

  38. Santhanagopalan D, Qian D, McGilvray T, Wang Z, Wang F, Camino F et al 2014 J. Phys. Chem. Lett. 5 298

    CAS  Google Scholar 

  39. Wang H, Hou B, Wang X, Xia S and Chew H B 2015 Nano Lett. 15 1716

    CAS  Google Scholar 

  40. Stournara M E, Xiao X, Johari P, Lu P, Sheldon B W, Gao H et al Nano Lett. 13 4759

  41. Zhang X, Krischok A and Linder C 2016 Comput. Methods Appl. Mech. Eng. 312 51

    Google Scholar 

  42. Liu X H and Huang J Y 2011 Energy Environ. Sci. 4 3844

    CAS  Google Scholar 

  43. Liu X H, Wang J W, Huang S, Fan F, Huang X, Liu Y et al 2012 Nat. Nanotechnol. 7 749

    Google Scholar 

  44. Pan J, Zhang Q, Xiao X, Cheng Y T and Qi Y 2016 ACS Appl. Mater. Interfaces 8 5687

    CAS  Google Scholar 

  45. Zhang C, Santhanagopalan S, Sprague M A and Pesaran A A 2015 J. Power Sources 290 102

    CAS  Google Scholar 

  46. Xie H, Zhang Q, Song H, Shi B and Kang Y 2017 J. Power Sources 342 896

    CAS  Google Scholar 

  47. Xie H, Qiu W, Song H and Tian J 2016 J. Electrochem. Soc. 163 A2685

    CAS  Google Scholar 

  48. Meyer M, Komsiyska L, Lenz B and Agert C 2013 Appl. Math. Model 37 2016

    Google Scholar 

  49. Mihai L A and Goriely A 2017 Proc. R Soc. A Math. Phys. Eng. Sci. 473 20170607

    Google Scholar 

  50. Mihai L A, Woolley T E and Goriely A 2018 Proc. R Soc. A Math. Phys. Eng. Sci. 474 20170858

    Google Scholar 

  51. Berla L A, Lee S W, Cui Y and Nix W D 2015 J. Power Sources 273 41

    CAS  Google Scholar 

  52. Voyiadjis G Z and Kattan P I (1999) Advances in Damage Mechanics: Metals and Metal Matrix Composites (Amsterdam, Netherlands: Elsevier Science) chap. 4, p. 51

    Google Scholar 

  53. Slaughter WS (2002) The Linearized Theory of Elasticity (Birkhäuser, Boston, MA) pp. 97–155. https://doi.org/10.1007/978-1-4612-0093-2_3

    Book  Google Scholar 

  54. Zhao K, Pharr M, Vlassak J J, Suo Z, Zhao K, Pharr M et al 2013 J. Appl. Phys. 109 2011

    Google Scholar 

  55. Huang S, Fan F, Li J, Zhang S and Zhu T 2013 Acta Mater. 61 4354

    CAS  Google Scholar 

  56. Taheri P, Hsieh S and Bahrami M 2011 J. Power Sources 196 6525

    CAS  Google Scholar 

  57. Parka M, Zhang X, Chung M, Less G B and Sastry A M 2010 J. Power Sources 195 7004

    Google Scholar 

  58. Taheri P, Mansouri A, Schweitzer B, Yazdanpour M and Bahramia M 2013 J. Electrochem. Soc. 160 A1731

    CAS  Google Scholar 

  59. Ferrese A and Newman J 2014 J. Electrochem. Soc. 161 A948

    CAS  Google Scholar 

  60. Weiss M, Ruess R, Kasnatscheew J, Levartovsky Y, Lavy N R, Minnmann P et al 2021 Adv. Energy Mater. 11 2101126

    CAS  Google Scholar 

  61. Mishra D, Jangid M K, Chhangani S, Gandharapu P, Prasad M J N V and Mukhopadhyay A 2020 Energy Fuels 34 7763

    CAS  Google Scholar 

  62. Maranchi J P, Hepp A F, Evans A G, Nuhfer N T and Kumta P N 2006 J. Electrochem. Soc. 153 A1246

    CAS  Google Scholar 

  63. Soni S K, Sheldon B W, Xiao X, Verbrugge M W, Ahn D, Haftbaradaran H et al 2012 J. Electrochem. Soc. 159 A38

    CAS  Google Scholar 

  64. Xiao X, Liu P, Verbrugge M W, Haftbaradaran H and Gao H 2011 J. Power Sources 196 1409

    CAS  Google Scholar 

  65. Jangid M K, Sonia F J, Kali R, Ananthoju B and Mukhopadhyay A 2017 Carbon 111 602

    CAS  Google Scholar 

  66. Kasavajjula U, Wang C and Appleby A J 2007 J. Power Sources 163 1003

    CAS  Google Scholar 

  67. Thomas K and Newman J 2003 J. Power Sources 119 844

    Google Scholar 

  68. Basinski Z S, Sahoo M and Saimoto S 1977 Acta Metall. 25 657

    CAS  Google Scholar 

  69. Soares J B, De Freitas F A C and Allen D H 2003 Transp. Res. Rec. 1832 113

    Google Scholar 

  70. Lu X, Bertei A, Finegan D P, Tan C, Daemi S R, Weaving J S et al 2020 Nat. Commun. 11 2079

    CAS  Google Scholar 

  71. Tanim T R, Paul P P, Thampy V, Cao C, Steinruck H-G, Weker J N et al 2020 Cell Rep. Phys. Sci. 1 100114

    Google Scholar 

  72. Wang H, Zhu Y, Kim S C, Pei A, Li Y, Boyle D T et al 2020 Proc. Natl. Acad. Sci. USA 117 29453

    CAS  Google Scholar 

  73. R¨oder F, Braatz R D and Krewera U 2017 J. Electrochem. Soc. 164 E3335

  74. Snowden M E, Dayeh M, Payne N A, Gervais S, Mauzeroll J and Schougaard S B 2016 J. Power Sources 325 682

    CAS  Google Scholar 

  75. De Araujo C J, Morin M and Guénin G 1999 Mater. Sci. Eng. A 273–275 305

    Google Scholar 

  76. Stadnyk B I and Motalo V P 1987 Meas. Tech. 30 608

    Google Scholar 

  77. Haro M, Singh V, Steinhauer S, Toulkeridou E, Grammatikopoulos P and Sowwan M 2017 Adv. Sci. 4 1700180

    Google Scholar 

  78. Yang Y, Xu R, Zhang K, Lee S-J, Mu, Liu P et al 2019 Adv. Energy Mater. 9 1900674

    Google Scholar 

  79. Zhao K, Wang W L, Gregoire J, Pharr M, Suo Z, Vlassak J J et al 2011 Nano Lett. 11 2962

    CAS  Google Scholar 

Download references

Acknowledgements

This study has been supported by the DST-SERB, India, in the form of financial assistance having grant number SERB/EMR/2016/003030 and GTS thanks DST India for INSPIRE senior research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailendra K Jha.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 132 kb)

Appendices

Appendix

Stiffness-induced deformation

The force experienced by the electrode material and the substrate due to stiffness-induced deformation is given in equations (13) and (14), respectively. Under the assumption of equi-biaxial in-plane total strain and within the classical beam theory, the axial tensile force is in equilibrium with the axial compressive force at the electrode–substrate interface and hence it can be expressed or rearranged as follows

$$ \varepsilon_{{\text{s}}} = S^{*} \varepsilon_{{\text{e}}}. $$
(A.1)

where \(S^{*}\) is the effective stiffness ratio and can be given as \(S^{*} = S_{{\text{e}}} /S_{{\text{s}}} = \left( {Y_{{\text{e}}} A_{{\text{e}}} } \right)/ \left( {Y_{{\text{s}}} A_{{\text{s}}} } \right)\). The cross-sectional area of the electrode and the current collector has been written as \(A_{{\text{e}}} = \left( {t_{{\text{e}}} w} \right)\) and \(A_{{\text{s}}} = \left( {t_{{\text{s}}} w} \right)\), where w is the width of the electrode and hence, \(S^{*} = Y_{{\text{e}}} t_{{\text{e}}} /Y_{{\text{s}}} t_{{\text{s}}}\). For the dimensional neutrality, we have used the NES ratio, i.e., \(S = S^{*} /S_{{{\text{min}}}}^{*}\) in our calculation. In other words, the normalized stiffness ratio can be obtained by normalizing the stiffness ratio with its minimum value. Further, the NES ratio has been used to maintain the interfacial continuous condition the above expression has been rewritten as follows:

$$ \left. {\varepsilon_{{\text{e}}} } \right|_{{z_{{\text{e}}} = - t_{{\text{e}}} /2}} = S\left. {\varepsilon_{{\text{s}}} } \right|_{{z_{{{\text{s}} }} = t_{{\text{s}}} /2}}. $$
(A.2)

Within the limit of \(S \to 1\) and the interfacial continuous condition used in equation (A.2) is not at all destroying the nature of expression used in reference [44] for the development of modified Stoney’s and can be expressed as follows:

$$ \left. {\varepsilon_{{\text{e}}} } \right|_{{z_{{\text{e}}} = - t_{{\text{e}}} /2}} = \left. {\varepsilon_{{\text{s}}} } \right|_{{z_{{{\text{s}} }} = t_{{\text{s}}} /2}}. $$
(A.3)

Further, by using equations (48) and equation (A.2), we get

$$ \frac{F}{{Y_{{\text{s}}} t_{{\text{s}}} w}} + \kappa \left( {\frac{{t_{{\text{s}}} }}{2}} \right) = S\left( { - \frac{F}{{Y_{{\text{e}}} t_{{\text{e}}} w}} + \kappa \left( { - \frac{{t_{{\text{e}}} }}{2}} \right) + \beta \frac{C}{{C_{{{\text{max}}}} }}} \right). $$
(A.4)

After rearranging the above equation, we get

$$ \frac{F}{w}\left( {\frac{S}{{Y_{{\text{e}}} t_{{\text{e}}} }} + \frac{1}{{Y_{{\text{s}}} t_{{\text{s}}} }}} \right) + \kappa \left( {\frac{{St_{{\text{e}}} }}{2} + \frac{{t_{{\text{s}}} }}{2}} \right) = S\beta \overline{c}. $$
(A.5)

In the above equation, the \(F/w\) can be replaced from equation (12) and we get

$$ \kappa \frac{{\left( {Y_{{\text{e}}} t_{{\text{e}}}^{3} + Y_{{\text{s}}} t_{{\text{s}}}^{3} } \right)}}{{6\left( {t_{{\text{e}}} + t_{{\text{s}}} } \right)}}\left( {\frac{{Y_{{\text{e}}} t_{{\text{e}}} + SY_{{\text{s}}} t_{{\text{s}}} }}{{Y_{{\text{e}}} t_{{\text{e}}} Y_{{\text{s}}} t_{{\text{s}}} }}} \right) + \kappa \left( {\frac{{St_{{\text{e}}} + t_{{\text{s}}} }}{2}} \right) = S\beta \overline{c}. $$
(A.6)

The rearrangement of the above expression can be expressed as follows:

$$ \kappa \left\{ {\left( {Y_{{\text{e}}} t_{{\text{e}}}^{3} + Y_{{\text{s}}} t_{{\text{s}}}^{3} } \right)\left( {Y_{{\text{e}}} t_{{\text{e}}} + SY_{{\text{s}}} t_{{\text{s}}} } \right) + 3\left( {St_{{\text{e}}} + t_{{\text{s}}} } \right)\left( {t_{{\text{e}}} + t_{{\text{s}}} } \right)Y_{{\text{e}}} t_{{\text{e}}} Y_{{\text{s}}} t_{{\text{s}}} } \right\} = 6S\beta \overline{c}\left( {t_{{\text{e}}} + t_{{\text{s}}} } \right)Y_{{\text{e}}} t_{{\text{e}}} Y_{{\text{s}}} t_{{\text{s}}} $$
(A.7)

Further rearrangement will lead to

$$ \kappa \left( {Y_{{\text{e}}}^{2} t_{{\text{e}}}^{4} + SY_{{\text{e}}} t_{{\text{e}}}^{3} Y_{{\text{s}}} t_{{\text{s}}} + Y_{{\text{s}}} t_{{\text{s}}}^{3} Y_{{\text{e}}} t_{{\text{e}}} + SY_{{\text{s}}}^{2} t_{{\text{s}}}^{4} + 3SY_{{\text{e}}} t_{{\text{e}}}^{3} Y_{{\text{s}}} t_{{\text{s}}} + 3SY_{{\text{e}}} t_{{\text{e}}}^{2} Y_{{\text{s}}} t_{{\text{s}}}^{2} + 3Y_{{\text{e}}} t_{{\text{e}}} Y_{{\text{s}}} t_{{\text{s}}}^{3} + 3Y_{{\text{e}}} t_{{\text{e}}}^{2} Y_{{\text{s}}} t_{{\text{s}}}^{2} } \right) = 6\beta \overline{c}\left( {t_{{\text{e}}} /t_{{\text{s}}} + 1} \right)Y_{{\text{e}}} t_{{\text{e}}} Y_{{\text{s}}} t_{{\text{s}}}^{2}. $$
(A.8)

Dividing the above equation by \(Y_{{\text{s}}}^{2} t_{{\text{s}}}^{4}\) and we get

$$ \kappa \left( {\frac{{Y_{{\text{e}}}^{2} t_{{\text{e}}}^{4} }}{{Y_{{\text{s}}}^{2} t_{{\text{s}}}^{4} }} + 4S\frac{{Y_{{\text{e}}} t_{{\text{e}}}^{3} }}{{Y_{{\text{s}}} t_{{\text{s}}}^{3} }} + 4\frac{{Y_{{\text{e}}} t_{{\text{e}}} }}{{Y_{{\text{s}}} t_{{\text{s}}} }} + S + 3\left( {S + 1} \right)\frac{{Y_{{\text{e}}} t_{{\text{e}}}^{2} }}{{Y_{{\text{s}}} t_{{\text{s}}}^{2} }}} \right) = 6\beta \overline{c}\left( {t_{{\text{e}}} /t_{{\text{s}}} + 1} \right)\frac{{Y_{{\text{e}}} t_{{\text{e}}} }}{{Y_{{\text{s}}} t_{{\text{s}}}^{2} }}. $$
(A.9)

By solving the above equation, substituting with \(S^{*} = Y_{{\text{e}}} t_{{\text{e}}} /Y_{{\text{s}}} t_{{\text{s}}}\) and \(t = t_{{\text{e}}} /t_{{\text{s}}}\) and rearranging the terms we get the curvature expression as follows:

$$ \kappa \left( {C,S\left( C \right)} \right) = \frac{{6SS^{*} \beta \overline{c}\left( {t + 1} \right)}}{{t_{{\text{s}}} \left[ {S + 4S^{*} + 3\left( {S + 1} \right)S^{*} t + 4SS^{*} t^{2} + S^{*2} t^{2} } \right]}} $$
(A.10)

The above expression of curvature is due to lithiation cum stiffness-driven curvature response of bilayer film electrode.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvi, G.T., Jha, S.K. Anomalous interfacial stress generation and role of elasto-plasticity in mechanical failure of Si-based thin film anodes of Li-ion batteries. Bull Mater Sci 45, 23 (2022). https://doi.org/10.1007/s12034-021-02602-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02602-3

Keywords

Navigation