Skip to main content
Log in

Damage and fracture with strain gradient plasticity for high-capacity electrodes of Li-ion batteries

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

In consideration of the high-density dislocations from the lithiation process of high-capacity electrodes in Li-ion batteries, in this paper, a new elastoplastic model is established to describe the diffusion-induced deformation and damage fracture. With the help of the relative physical quantities and state of charge, the surface damage and fracture behaviors of electrode materials are discussed based on the elastic-perfectly plastic (PP) and the strain gradient plasticity (SGP) theories, respectively. The results show that the lithiation deformation could be alleviated by reducing the electrode scale, and the plastic flow can play an essential role in the extrusion ratcheting effect relating to the upper surface fracture. Furthermore, the interface damage is more likely to appear by increasing the initial bond stiffness at the upper surface, which has little effect on the later fracture. A strong size effect is also found in the damage and fracture critical curves for the PP and SGP models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414: 359–367

    Article  Google Scholar 

  2. Hao F, Fang D. Diffusion-induced stresses of spherical core-shell electrodes in lithium-ion batteries: The effects of the shell and surface/interface stress. J Electrochem Soc, 2013, 160: A595–A600

    Article  Google Scholar 

  3. Kalnaus S, Rhodes K, Daniel C. A study of lithium ion intercalation induced fracture of silicon particles used as anode material in Li-ion battery. J Power Sources, 2011, 196: 8116–8124

    Article  Google Scholar 

  4. Jiang J, Dahn J R. Effects of solvents and salts on the thermal stability of LiC6. Electrochim Acta, 2004, 49: 4599–4604

    Article  Google Scholar 

  5. Zhang J, Lu B, Song Y, et al. Diffusion induced stress in layered Li-ion battery electrode plates. J Power Sources, 2012, 220–227

  6. Chen C F, Mukherjee P P. Probing the morphological influence on solid electrolyte interphase and impedance response in intercalation electrodes. Phys Chem Chem Phys, 2015, 17: 9812–9827

    Article  Google Scholar 

  7. Chen C F, Barai P, Mukherjee P P. Diffusion induced damage and impedance response in lithium-ion battery electrodes. J Electrochem Soc, 2014, 161: A2138–A2152

    Article  Google Scholar 

  8. Larcher D, Beattie S, Morcrette M, et al. Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries. J Mater Chem, 2007, 17: 3759–3772

    Article  Google Scholar 

  9. Liu X H, Huang J Y. In situ tem electrochemistry of anode materials in lithium ion batteries. Energy Environ Sci, 2011, 4: 3844–3860

    Article  Google Scholar 

  10. Liu X H, Zheng H, Zhong L, et al. Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett, 2011, 11: 3312–3318

    Article  Google Scholar 

  11. Beaulieu L Y, Eberman K W, Turner R L, et al. Colossal reversible volume changes in lithium alloys. Electrochem Solid-State Lett, 2001, 4: A137

    Article  Google Scholar 

  12. Beaulieu L Y, Hatchard T D, Bonakdarpour A, et al. Reaction of Li with alloy thin films studied by in situ AFM. J Electrochem Soc, 2003, 150: A1457

    Article  Google Scholar 

  13. Huggins R A. Advanced Batteries. Berlin: Springer, 2009. 491

    Google Scholar 

  14. Wang W, Kumta P N. Reversible high capacity nanocomposite anodes of Si/C/SWNTs for rechargeable Li-ion batteries. J Power Sources, 2007, 172: 650–658

    Article  Google Scholar 

  15. Baggetto L, Niessen R A H, Roozeboom F, et al. High energy density all-solid-state batteries: A challenging concept towards 3D integration. Adv Funct Mater, 2008, 18: 1057–1066

    Article  Google Scholar 

  16. Zhang W J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sources, 2011, 196: 13–24

    Article  Google Scholar 

  17. Woodford W H, Chiang Y M, Carter W C. “Electrochemical shock” of intercalation electrodes: A fracture mechanics analysis. J Electrochem Soc, 2010, 157: A1052

    Article  Google Scholar 

  18. Wang D, Wu X, Wang Z, et al. Cracking causing cyclic instability of LiFePO4 cathode material. J Power Sources, 2005, 140: 125–128

    Article  Google Scholar 

  19. Itou Y, Ukyo Y. Performance of LiNiCoO2 materials for advanced lithium-ion batteries. J Power Sources, 2005, 146: 39–44

    Article  Google Scholar 

  20. Bourderau S, Brousse T, Schleich D M. Amorphous silicon as a possible anode material for Li-ion batteries. J Power Sources, 1999, 81: 233–236

    Article  Google Scholar 

  21. Yoshio M, Tsumura T, Dimov N. Electrochemical behaviors of silicon based anode material. J Power Sources, 2005, 146: 10–14

    Article  Google Scholar 

  22. Zhang X, Song W L, Liu Z, et al. Geometric design of micron-sized crystalline silicon anodes through in situ observation of deformation and fracture behaviors. J Mater Chem A, 2017, 5: 12793–12802

    Article  Google Scholar 

  23. Lu B, Song Y, Zhang Q, et al. Voltage hysteresis of lithium ion batteries caused by mechanical stress. Phys Chem Chem Phys, 2016, 18: 4721–4727

    Article  Google Scholar 

  24. Burebi Y M, Jia Z, Qu S X. A chemo-mechanical model for fully-coupled lithiation reaction and stress generation in viscoplastic lithiated silicon. Sci China Tech Sci, 2019, 62: 1365–1374

    Article  Google Scholar 

  25. Shi S, Qi Y, Li H, et al. Defect thermodynamics and diffusion mechanisms in Li2CO3 and implications for the solid electrolyte interphase in Li-ion batteries. J Phys Chem C, 2013, 117: 8579–8593

    Article  Google Scholar 

  26. Pearson G L, Read Jr W T, Feldmann W L. Deformation and fracture of small silicon crystals. Acta Metall, 1957, 5: 181–191

    Article  Google Scholar 

  27. Dash W C. Growth of silicon crystals free from dislocations. J Appl Phys, 1959, 30: 459–474

    Article  Google Scholar 

  28. Huang J Y, Zhong L, Wang C M, et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science, 2010, 330: 1515–1520

    Article  Google Scholar 

  29. Wei P, Zhou J, Pang X, et al. Effects of dislocation mechanics on diffusion-induced stresses within a spherical insertion particle electrode. J Mater Chem A, 2014, 2: 1128–1136

    Article  Google Scholar 

  30. Gurtin M E. On the plasticity of single crystals: Free energy, microforces, plastic-strain gradients. J Mech Phys Solids, 2000, 48: 989–1036

    Article  MathSciNet  MATH  Google Scholar 

  31. Arsenlis A, Parks D M. Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density. Acta Mater, 1999, 47: 1597–1611

    Article  Google Scholar 

  32. Aifantis E C. On the microstructural origin of certain inelastic models. J Eng Mater Tech, 1984, 106: 326–330

    Article  Google Scholar 

  33. Li J, Fang Q, Liu F, et al. Analytical modeling of dislocation effect on diffusion induced stress in a cylindrical lithium ion battery electrode. J Power Sources, 2014, 272: 121–127

    Article  Google Scholar 

  34. Li Y, Zhang J, Zhang K, et al. A defect-based viscoplastic model for large-deformed thin film electrode of lithium-ion battery. Int J Plast, 2019, 115: 293–306

    Article  Google Scholar 

  35. Chen B, Zhou J, Zhu J, et al. Diffusion induced stress and the distribution of dislocations in a nanostructured thin film electrode during lithiation. RSC Adv, 2014, 4: 64216–64224

    Article  Google Scholar 

  36. Chong A C M, Lam D C C. Strain gradient plasticity effect in indentation hardness of polymers. J Mater Res, 1999, 14: 4103–4110

    Article  Google Scholar 

  37. Ashby M F. The deformation of plastically non-homogeneous materials. Philos Mag-A J Theor Exp Appl Phys, 1970, 21: 399–424

    Google Scholar 

  38. Cottrell A H, Artman R A. Mechanical properties of matter. Am J Phys, 1968, 36: 68–69

    Article  Google Scholar 

  39. Gao H. Mechanism-based strain gradient plasticity? I. Theory. J Mech Phys Solids, 1999, 47: 1239–1263

    Article  MathSciNet  MATH  Google Scholar 

  40. Chen S H, Wang T C. A new hardening law for strain gradient plasticity. Acta Mater, 2000, 48: 3997–4005

    Article  Google Scholar 

  41. Bardella L, Panteghini A. Modelling the torsion of thin metal wires by distortion gradient plasticity. J Mech Phys Solids, 2015, 78: 467–492

    Article  MathSciNet  MATH  Google Scholar 

  42. Gao H, Huang Y. Taylor-based nonlocal theory of plasticity. Int J Solids Struct, 2001, 38: 2615–2637

    Article  MATH  Google Scholar 

  43. Han C S, Gao H, Huang Y, et al. Mechanism-based strain gradient crystal plasticity—II. Analysis. J Mech Phys Solids, 2005, 53: 1204–1222

    Article  MathSciNet  MATH  Google Scholar 

  44. Mao Y Q, Ai S G, Fang D N, et al. Elasto-plastic analysis of micro FGM beam basing on mechanism-based strain gradient plasticity theory. Composite Struct, 2013, 101: 168–179

    Article  Google Scholar 

  45. Zhang Y, Cheng Z, Lu L, et al. Strain gradient plasticity in gradient structured metals. J Mech Phys Solids, 2020, 140: 103946

    Article  MathSciNet  Google Scholar 

  46. Lyu H, Hamid M, Ruimi A, et al. Stress/strain gradient plasticity model for size effects in heterogeneous nano-microstructures. Int J Plast, 2017, 97: 46–63

    Article  Google Scholar 

  47. Chen S H, Wang T C. Finite element solutions for plane strain mode I crack with strain gradient effects. Int J Solids Struct, 2002, 39: 1241–1257

    Article  MATH  Google Scholar 

  48. Xia Z C, Hutchinson J W. Crack tip fields in strain gradient plasticity. J Mech Phys Solids, 1996, 44: 1621–1648

    Article  Google Scholar 

  49. Huang M, Tong J, Li Z. A study of fatigue crack tip characteristics using discrete dislocation dynamics. Int J Plast, 2014, 54: 229–246

    Article  Google Scholar 

  50. Martínez-Pañeda E, Niordson C F. On fracture in finite strain gradient plasticity. Int J Plast, 2016, 80: 154–167

    Article  Google Scholar 

  51. Martínez-Pañeda E, Niordson C F, Gangloff R P. Strain gradient plasticity-based modeling of hydrogen environment assisted cracking. Acta Mater, 2016, 117: 321–332

    Article  Google Scholar 

  52. Chen S H, Wang T C. Size effects in the particle-reinforced metal-matrix composites. Acta Mech, 2002, 157: 113–127

    Article  MATH  Google Scholar 

  53. Jiang Y, Tohgo K. An incremental damage theory for micropolar composites taking account of progressive debonding and particle size effect. Comput Mater Sci, 2011, 50: 3358–3364

    Article  Google Scholar 

  54. Martínez-Pañeda E, Betegón C. Modeling damage and fracture within strain-gradient plasticity. Int J Solids Struct, 2015, 59: 208–215

    Article  Google Scholar 

  55. Liu B, Huang W M, Huang L, et al. Size-dependent compression deformation behaviors of high particle content B4C/Al composites. Mater Sci Eng-A, 2012, 534: 530–535

    Article  Google Scholar 

  56. Scudino S, Liu G, Prashanth K G, et al. Mechanical properties of Albased metal matrix composites reinforced with Zr-based glassy particles produced by powder metallurgy. Acta Mater, 2009, 57: 2029–2039

    Article  Google Scholar 

  57. Yang Y, Yao N, Soboyejo W O, et al. Deformation and fracture in micro-tensile tests of freestanding electrodeposited nickel thin films. Scripta Mater, 2008, 58: 1062–1065

    Article  Google Scholar 

  58. McGrogan F P, Bishop S R, Chiang Y M, et al. Connecting particle fracture with electrochemical impedance in LixMn2O4. J Electrochem Soc, 2017, 164: A3709–A3717

    Article  Google Scholar 

  59. Zhang Y, Guo Z. Numerical computation of central crack growth in an active particle of electrodes influenced by multiple factors. Acta Mech Sin, 2018, 34: 706–715

    Article  MathSciNet  MATH  Google Scholar 

  60. Liu M. Finite element analysis of lithiation-induced decohesion of a silicon thin film adhesively bonded to a rigid substrate under potentiostatic operation. Int J Solids Struct, 2015, 67–68: 263–271

    Article  Google Scholar 

  61. Taylor G I. The mechanism of plastic deformation of crystals. Part I.—Theoretical. Proc R Soc London, 1934, 145: 362–387

    MATH  Google Scholar 

  62. Bailey J E, Hirsch P B. The dislocation distribution, flow stress, and stored energy in cold-worked polycrystalline silver. Philos Mag, 1960, 5: 485–497

    Article  Google Scholar 

  63. Nye J F. Some geometrical relations in dislocated crystals. Acta Metall, 1953, 1: 153–162

    Article  Google Scholar 

  64. Zhang Y, Zhao C, Guo Z. Simulation of crack behavior of secondary particles in Li-ion battery electrodes during lithiation/de-lithiation cycles. Int J Mech Sci, 2019, 155: 178–186

    Article  Google Scholar 

  65. Li J, Xiao X, Yang F, et al. Potentiostatic intermittent titration technique for electrodes governed by diffusion and interfacial reaction. J Phys Chem C, 2012, 116: 1472–1478

    Article  Google Scholar 

  66. Maranchi J P, Hepp A F, Evans A G, et al. Interfacial properties of the a-Si/Cu: Active-inactive thin-film anode system for lithium-ion batteries. J Electrochem Soc, 2006, 153: A1246

    Article  Google Scholar 

  67. Sethuraman V A, Chon M J, Shimshak M, et al. In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation. J Power Sources, 2010, 195: 5062–5066

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Wang or ZengSheng Ma.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11872054 and 11972157), the Natural Science Foundation of Hunan Province (Grant No. 2020JJ2026), and the Science and Technology Innovation Project of Hunan Province (Grant No. 2018RS3091).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sang, M., Chen, Y., Jiang, W. et al. Damage and fracture with strain gradient plasticity for high-capacity electrodes of Li-ion batteries. Sci. China Technol. Sci. 64, 1575–1582 (2021). https://doi.org/10.1007/s11431-020-1751-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-020-1751-1

Keywords

Navigation