Skip to main content

Advertisement

Log in

Defect-induced strain-assisted surface electronic response of layered materials

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Two-dimensionally confined nanomaterials, popularly known as layered materials, are an emerging class of novel nano-sized materials with exotic chemical and physical properties. 2D materials like graphene, MoS2 and WS2 have offered fabrication of smart nano-electronic devices in recent years. However, based on their particular application, their properties have to be tuned for specific purposes. Presently, photoelectronic applications of these materials demand fine-tuning of their work function for the design of efficient contact materials, field-emission-based devices and high catalytic response in energy evolution reaction. The work function of layered materials can be effectively modulated through defect engineering. Defects generated in these nanomaterials create strain in the crystal structure which in turn change the work function of the materials. In this work, the defect-induced strain-assisted surface electronic response of layered materials has been reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805

    Article  Google Scholar 

  2. Ovchinnikov D, Allain A, Huang Y S, Dumcemco D and Kiss A 2014 ACS Nano 8 8174

    Article  CAS  Google Scholar 

  3. Flöry N, Jain A, Bharadwaj P, Parzefall M, Taniguchi T, Watanabe K et al 2015 Appl. Phys. Lett. 107 123106

    Article  Google Scholar 

  4. Suriani Muqoyyanah A B, Mohamed A, Alfarisa S, Mamat M H, Ahmad M K, Birowosuto M D et al 2020 Bull. Mater. Sci. 43 310

    Article  Google Scholar 

  5. Viji P, Bharkavi S, Vijayan P, Sivadhayanidhy M and Suresh C 2020 Bull. Mater. Sci. 43 145

    Article  CAS  Google Scholar 

  6. Ho W, Yu J C, Lin J, Yu J and Li P 2004 Langmuir 20 5865

    Article  CAS  Google Scholar 

  7. Ghosh S, Calizo I, Teweldebrhan D, Pokatilov E P, Nika D L, Balandin A A et al 2008 Appl. Phys. Lett. 92 151911

    Article  Google Scholar 

  8. Dias A C, Qu F, Azevedo D L and Fu J 2018 Phys. Rev. B 98 075202

    Article  CAS  Google Scholar 

  9. Ellis J K, Lucero M J and Scuseria G E 2011 Appl. Phys. Lett. 99 261908

    Article  Google Scholar 

  10. Hu Z, Wu Z, Han C, He J, Ni Z and Chen W 2018 Chem. Soc. Rev. 47 3100

    Article  CAS  Google Scholar 

  11. Kim J H, Hwang J H, Suh J, Tongay S, Kwon S, Hwang C C et al 2013 Appl. Phys. Lett. 103 171604

    Article  Google Scholar 

  12. Ravalia A, Vagadia M, Solanki P S, Asokan S and Kuberkar D G 2014 J. Exp. Nanosci. 10 1057

    Article  Google Scholar 

  13. Krasheninnikov A V and Nordlund K 2010 J. Appl. Phys. 107 071301

    Article  Google Scholar 

  14. Sathish N, Pathaka A P, Dhamodaran S, Sundaravel B, Nair K G M, Khan S A et al 2011 Radiat. Eff. Defects Solids 166 843

    Article  CAS  Google Scholar 

  15. Mishra M, Meinerzhagen F, Schleberger M, Kanjilal D and Mohanty T 2015 J. Phys. Chem. C 119 21270

    Article  CAS  Google Scholar 

  16. Nicolosi V, Chhowalla M, Kanatzidis M G, Strano M S and Coleman J N 2011 Science 334 72

    Article  Google Scholar 

  17. Weber W J, Duffy D M, Thome L and Zhang Y 2015 Curr. Opin. Solid State Mater. Sci. 19 1

    Article  CAS  Google Scholar 

  18. Zhang Y, Varga T, Ishimaru M, Edmondson P D, Xue H, Liu P et al 2014 Nucl. Instrum. Meth. Phys. Res. B 327 33

    Article  CAS  Google Scholar 

  19. Bolse W 1993 Nucl. Instrum. Meth. Phys. Res. B 80 137

    Article  Google Scholar 

  20. Ryazanov A I, Pavlov S A, Metelkin E V and Zhemerev A V 2005 J. Exp. Theor. Phys. 101 120

    Article  CAS  Google Scholar 

  21. Ziegler J F 2013 SRIM-2013 (http://www.srim.org/)

  22. Volodin A, Van Haesendonck C, Leenaerts O, Partoens B and Peeters F M 2017 Appl. Phys. Lett. 110 193101

    Article  Google Scholar 

  23. Choi S-M, Jhi S-H and Son Y-W 2010 Phys. Rev. B 81 081407

    Article  Google Scholar 

  24. He X, Tang N, Sun X, Gan L, Ke F, Wang T et al 2015 Appl. Phys. Lett. 106 043106

    Article  Google Scholar 

  25. Lanzillo N A, Simbeck A J and Nayak S K 2015 J. Phys.: Condens. Matter 27 175501

    Google Scholar 

  26. Shakya J, Kumar S, Kanjilal D and Mohanty T 2017 Sci. Rep. 7 9576

    Article  Google Scholar 

  27. Meng L, Zhang Y, Hu S, Wang X, Liu C, Guo Y et al 2016 Appl. Phys. Lett. 108 263104

    Article  Google Scholar 

  28. Shi Y, Kim K K, Reina A, Hofmann M, Li L-J and Kong J 2010 ACS Nano 4 2689

    Article  CAS  Google Scholar 

  29. Shakya J, Kumar S and Mohanty T 2018 J. Appl. Phys. 123 165103

    Article  Google Scholar 

  30. Esfandiari M, Kamaei S, Rajabali M and Mohajerzadeh S 2021 2D Mater. 8 025013

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to AIRF, JNU, for the Raman measurements given in figure 9. We would also like to thank Jyoti Shakya and M K Kumawat for their assistance. SK sincerely thanks UGC, India, for the research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanuja Mohanty.

Additional information

This article is part of the Special Issue on ‘Quantum Materials and Devices’.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Mahanta, T. & Mohanty, T. Defect-induced strain-assisted surface electronic response of layered materials. Bull Mater Sci 44, 256 (2021). https://doi.org/10.1007/s12034-021-02549-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02549-5

Keywords

Navigation