Skip to main content

Advertisement

Log in

Strategy for enhancing the hydrogen evolution reaction properties of \(\hbox {MoS}_{\mathrm {2}}\) by utilizing the ordered mesoporous carbon as support and modification with nickel

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Surface modification of electrocatalyst suitable for yielding reduced overpotential with improved exchange current density at the interface is highly desired for hydrogen evolution reaction (HER). Herein, the present report demonstrates the HER performance of ordered mesoporous carbon (OMC)-supported nickel-modified \(\hbox {MoS}_{\mathrm {2}}\) electrocatalysts [NiMoS(x)–OMC] synthesized by hydrothermal route. Inherent activity of pristine \(\hbox {MoS}_{\mathrm {2}}\) was improved by two vital surface strategies utilizing OMC as the support matrix for the dispersed growth of active catalyst and surpassing the active sites formation via augmentation of various concentrations of nickel. Crystalline phase, heterostructure vibrations, morphological orientation and electrocatalytic property of the prepared catalysts are comprehensively studied using different spectroscopic methods. Linear sweep voltammetric analysis suggests that the HER from the pristine \(\hbox {MoS}_{\mathrm {2}}\) could be amplified by introducing OMC as support matrix. Synergistic enrichment of Ni (3 and 5 wt%) on \(\hbox {MoS}_{\mathrm {2}}\)–OMC matrix enables both the lowest onset potential (180 and 185 mV) and Tafel slope values (103 and 100 mV per decade), with retained stability promising for further optimization and scalability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alex C and Donald W K 2018 Energy Econ.70 179

    Article  Google Scholar 

  2. Omar E, Haitham A R and Frede B 2014 Renew. Sust. Energ. Rev.39 748

    Article  Google Scholar 

  3. Panwar N L, Kaushik S C and Surendra K 2011 Renew. Sust. Energ. Rev.15 1513

    Article  Google Scholar 

  4. Dresselhaus M S and Thomas I L 2001 Nature414 332

    Article  CAS  Google Scholar 

  5. John A T 2004 Science305 972

    Article  Google Scholar 

  6. Wei-Fu C, James T M and Etsuko F 2013 Chem. Commun.49 8896

    Article  Google Scholar 

  7. Peng X, Wei C and Xin W 2015 Adv. Energy Mater.5 1500985

    Article  Google Scholar 

  8. Min-Rui G, Yun-Fei X, Jun J and Shu-Hong Y 2013 Chem. Soc. Rev.42 2986

    Article  Google Scholar 

  9. Nasir M, Yunduo Y, Jing-Wen Z, Lun P, Xiangwen Z and Ji-Jun Z 2018 Adv. Sci.5 1700464

    Article  Google Scholar 

  10. Peitao L, Jingyi Z, Jingyan Z, Kun T, Daqiang G and Pinxian X 2018 Electrochem. Acta260 24

    Article  Google Scholar 

  11. Thomas F J, Kristina P J, Jacob B, Jane H N, Sebastian H and Chorkendorff I B 2007 Science317 100

    Article  Google Scholar 

  12. Xiaoping D, Kangli D, Zhanzhao L, Hui S, Ying Y, Wen Z et al 2015 Int. J. Hydrog. Energy40 8877

    Article  Google Scholar 

  13. Yanguang L, Hailiang W, Liming X, Yongye L, Guosong H and Hongjie D 2011 J. Am. Chem. Soc.133 7296

    Article  Google Scholar 

  14. Weijia Z, Kai Z, Dongman H, Xiaojun L, Guoqiang L, Yuanhua S et al 2014 ACS Appl. Mater. Interfaces6 21534

    Article  Google Scholar 

  15. Thomas R H, Jakob K, Charlie T, David W P, Laurie A K, Frank A-P et al 2017 ACS Catal.7 7126

    Article  Google Scholar 

  16. Jie Z, Wenchao S, Zhongbin Z, Bingjun X and Yushan Y 2016 Sci. Adv.2 e1501602

    Article  Google Scholar 

  17. Julien D, Christoph S, Frédéric H and Hubert A G 2015 J. Electrochem. Soc. 162 190

    Article  Google Scholar 

  18. Jie P, Changsheng S, Xin W, Xiaotao Y, Yuqiang F, Chenguang G et al 2017 Inorg. Chem. Front.4 1895

    Google Scholar 

  19. Xucai Y, Haifeng D, Gang S, Wu Y, Ailing S, Qinghua D et al 2017 Int. J. Hydrog. Energy42 11262

    Article  Google Scholar 

  20. Swathi M, Md A W, Luqman A, Muxina K and Jorge B 2019 RSC Adv.9 17194

    Article  Google Scholar 

  21. Xing Z and Yongye L 2018 Adv. Sci.5 1700644

    Article  Google Scholar 

  22. Jiamu C, Jing Z, Yufeng Z, Yuxi W and Xiaowei L 2018 ACS Appl. Mater. Interfaces10 1752

    Article  Google Scholar 

  23. Jian Z, Tao W, Pan L, Shaohua L, Renhao D, Xiaodong Z et al 2016 Energy Environ. Sci. 9 2789

    Article  Google Scholar 

  24. Chengdu L, Zuojiang L and Sheng D 2008 Angew. Chem. Int. Ed.47 3696

    Article  Google Scholar 

  25. Elodie B, Pavel A, Gilles B, Denis U and Stephane L 2016 C.R. Chimie19 1310

  26. Dezhi W, Xiangyong Z, Yilin S and Zhuangzhi W 2016 RSC Adv. 6 16656

    Article  Google Scholar 

  27. Xiaoyan M, Jinquan L, Changhua A, Juan F, Yuhua C, Junxue L et al 2016 Nano Res.9 2284

    Article  Google Scholar 

  28. Dario M, Paul T, Laura C, Tomasz K, Denis G, Doriana D et al 2019 Surfaces2 531

    Article  Google Scholar 

Download references

Acknowledgements

Suresh thanks CSIR-CECRI in-house start-up scheme (Grant No: IHP-0091), CSIR Network Project (M2D, CSC 0134), Fast track Translational project (MLP-0102) and Central Instrumentation Facility Division of CSIR-CECRI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Suresh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viji, P., Bharkavi, S., Vijayan, P. et al. Strategy for enhancing the hydrogen evolution reaction properties of \(\hbox {MoS}_{\mathrm {2}}\) by utilizing the ordered mesoporous carbon as support and modification with nickel. Bull Mater Sci 43, 145 (2020). https://doi.org/10.1007/s12034-020-02133-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02133-3

Keywords

Navigation