Skip to main content
Log in

Towards a green and cost-effective synthesis of polyanionic cathodes: comparative electrochemical behaviour of LiFePO4/C, Li2FeP2O7/C and Li2FeSiO4/C synthesized using methylcellulose matrix

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The polyanion cathodes for Li-ion batteries, namely LiFePO4, Li2FeP2O7 and Li2FeSiO4, were synthesized by very short high-temperature treatment (approximately several minutes) and subsequent quenching. Methylcellulose—a polymer with thermally driven water solubility—was used as the medium in which the precursor solutions were dispersed prior to high temperature treatment. The methylcellulose pyrolytically decomposes to carbon, thus producing the polyanion material/carbon composites of LiFePO4/C, Li2FeP2O7/C and Li2FeSiO4/C. The obtained powders have reduced crystallinity and significant microstructural characteristics: low crystallite size and notable microstrain. They exhibit stable electrochemical performances in both aqueous and organic electrolyte. The broadening of existing peaks in cyclic voltammetry and/or the emergence of new broad peaks was attributed to the presence of the amorphous phase in the samples. In galvanostatic charge–discharge tests, the materials provided high capacities at low current densities, while the highest rate performance was demonstrated by olivine-phosphate when compared to the other two materials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

taken from a crystallographic database (dotted line). The most prominent peaks are indexed in P21/c (for Li2FeSiO4 and Li2FeP2O7) and Pnma (LiFePO4) symmetry group and observed impurity peaks are marked with a geometrically shaped signs.

Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Gutierrez A, Benedek N A and Manthiram A 2013 Chem. Mater. 25 4010

    Article  CAS  Google Scholar 

  2. Padhi A K, Nanjundaswamy K S and Goodenough J B 1997 J. Electrochem. Soc. 144 1188

    Article  CAS  Google Scholar 

  3. Nishimura S, Nakamura M, Natsui R and Yamada A 2010 J. Am. Chem. Soc. 132 13596

    Article  CAS  Google Scholar 

  4. Nytén A, Abouimrane A, Armand M, Gustafsson T and Thomas J O 2005 Electrochem. Commun. 7 156

    Article  Google Scholar 

  5. Zaghib K, Mauger A, Goodenough J B, Gendron F and Julien C M 2007 Chem. Mater. 19 3740

    Article  CAS  Google Scholar 

  6. Zhang Y, Wang P, Zheng T, Li D, Li G and Yue Y 2018 Nano Energy 49 596

    Article  CAS  Google Scholar 

  7. Xiong F, An Q, Xia L, Zhao Y, Mai L, Tao H et al 2019 Nano Energy 57 608

    Article  CAS  Google Scholar 

  8. Guo H, Song X, Zhuo Z, Hu J, Liu T, Duan Y et al 2016 Nano Lett. 16 601

    Article  CAS  Google Scholar 

  9. Gibot P, Casas-Cabanas M, Laffont L, Levasseur S, Carlach P, Hamelet S et al 2008 Nat. Mater. 7 741

    Article  CAS  Google Scholar 

  10. Amisse R, Sougrati M T, Stievano L, Davoisne C, Dražič G, Budič B et al 2015 Chem. Mater. 27 4261

    Article  CAS  Google Scholar 

  11. Hoang K and Johannes M 2011 Chem. Mater. 23 3003

    Article  CAS  Google Scholar 

  12. Jensen K M Ø, Christensen M, Gunnlaugsson H P, Lock N, Bøjesen E D, Proffen T et al 2013 Chem. Mater. 25 2282

    Article  CAS  Google Scholar 

  13. Jugović D, Milović M, Ivanovski V N, Avdeev M, Dominko R, Jokić B et al 2014 J. Power Sources 265 75

    Article  Google Scholar 

  14. Dabas P and Hariharan K 2014 RSC Adv. 4 14348

    Article  CAS  Google Scholar 

  15. Ferrari S, Capsoni D, Casino S, Destro M, Gerbaldi C and Bini M 2014 Phys. Chem. Chem. Phys. 16 10353

    Article  CAS  Google Scholar 

  16. Jugović D, Mitrić M, Milović M, Cvjetićanin N, Jokić B, Umićević A et al 2017 Ceram. Int. 43 3224

    Article  Google Scholar 

  17. Cyster L A, Grant D M, Howdle S M, Rose F R A J, Irvine D J, Freeman D et al 2005 Biomaterials 26 697

    Article  CAS  Google Scholar 

  18. Li Y, Guo Z, Hao J and Ren S 2008 J. Mater. 208 457

    CAS  Google Scholar 

  19. Kotobuki M, Mizuno Y, Munakata H and Kanamura K 2011 Electrochemistry 79 467

    Article  CAS  Google Scholar 

  20. Jugović D, Mitrić M, Milović M, Ivanovski V N, Škapin S, Dojčinović B et al 2019 J. Alloys Compd. 786 912

    Article  Google Scholar 

  21. Milović M, Jugović D, Mitrić M, Dominko R, Stojković-Simatović I, Jokić B et al 2016 Cellulose 23 239

    Article  Google Scholar 

  22. Takahashi M, Shimazaki M and Yamamoto J 2001 J. Polym. Sci. Phys. 39 91

    Article  CAS  Google Scholar 

  23. Cheary R W and Coelho A 1992 J. Appl. Crystallogr. 25 109

    Article  CAS  Google Scholar 

  24. Islam M S, Dominko R, Masquelier C, Sirisopanaporn C, Armstrong A R and Bruce P G 2011 J. Mater. Chem. 21 9811

    Article  CAS  Google Scholar 

  25. Milović M D, Vasić Anićijević D D, Jugović D, Anićijević V J, Veselinović L, Mitrić M et al 2019 Solid State Sci. 87 81

    Article  Google Scholar 

  26. Chen W, Lan M, Zhu D, Ji C, Feng X, Yang C et al 2013 J. Mater. Chem. A 1 10912

    Article  CAS  Google Scholar 

  27. Kosova N V, Tsapina A M, Slobodyuk A B and Petrov S A 2015 Electrochim. Acta 174 1278

    Article  CAS  Google Scholar 

  28. Zhang B, Ou X, Zheng J, Shen C, Ming L, Han Y et al 2014 Electrochim. Acta 133 1

    Article  Google Scholar 

  29. Kim H, Shakoor R A, Park C, Lim S Y, Kim J S, Jo Y N et al 2013 Adv. Funct. Mater. 23 1147

    Article  CAS  Google Scholar 

  30. Bard A J and Faulkner L R 2001 Electrochemical methods: fundamentals and applications 2nd ed (New York, United States: Wiley)

  31. Kisu K, Iwama E, Naoi W, Simon P and Naoi K 2016 Electrochem. Commun. 72 10

    Article  CAS  Google Scholar 

  32. Naoi K, Kisu K, Iwama E, Nakashima S, Sakai Y, Orikasa Y et al 2016 Energy Environ. Sci. 9 2143

    Article  CAS  Google Scholar 

  33. Gaberscek M, Moskon J, Erjavec B, Dominko R and Jamnik J 2008 Electrochem. Solid State Lett. 11 A170

    Article  CAS  Google Scholar 

  34. Schmidt J P, Chrobak T, Ender M, Illig J, Klotz D and Ivers-Tiffée E 2011 J. Power Sources 196 5342

    Article  CAS  Google Scholar 

  35. Atebamba J-M, Moskon J, Pejovnik S and Gaberscek M 2010 J. Electrochem. Soc. 157 A1218

    Article  CAS  Google Scholar 

  36. Lu X, Wei H, Chiu H C, Gauvin R, Hovington P, Guerfi A et al 2015 Sci. Rep. 5 1

    CAS  Google Scholar 

  37. Shimizu D, Nishimura S, Barpanda P and Yamada A 2012 Chem. Mater. 24 2598

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge The Ministry of Education, Science and Technological Development of the Republic of Serbia for providing financial support for this study, under contract no: 451-03-68/2020-14/200175 and under Bilateral Cooperation Project entitled ‘Developments of novel materials for alkaline-ion batteries’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miloš Milović.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 170 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milović, M., Jugović, D., Vujković, M. et al. Towards a green and cost-effective synthesis of polyanionic cathodes: comparative electrochemical behaviour of LiFePO4/C, Li2FeP2O7/C and Li2FeSiO4/C synthesized using methylcellulose matrix. Bull Mater Sci 44, 144 (2021). https://doi.org/10.1007/s12034-021-02397-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02397-3

Keywords

Navigation